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Abstract

Rationale: Stratification of asthma at the molecular level, especially
using accessible biospecimens, could greatly enable patient selection
for targeted therapy.

Objectives: To determine the value of blood analysis to identify
transcriptional differences between clinically defined asthma and
nonasthma groups, identify potential patient subgroups based on
gene expression, and explore biological pathways associated with
identified differences.

Methods: Transcriptomic profiles were generated by microarray
analysis of blood from 610 patients with asthma and control
participants in the U-BIOPRED (Unbiased Biomarkers in Prediction
ofRespiratoryDiseaseOutcomes) study.Differentially expressedgenes
(DEGs)were identified by analysis of variance, including covariates for
RNAquality, sex, and clinical site, and Ingenuity PathwayAnalysiswas
applied. Patient subgroupsbasedonDEGswere created byhierarchical
clustering and topological data analysis.

Measurements and Main Results: A total of 1,693 genes were
differentially expressed between patients with severe asthma and
participants without asthma. The differences from participants

without asthma in the nonsmoking severe asthma and
mild/moderate asthma subgroups were significantly related (r =
0.76), with a larger effect size in the severe asthma group. The
majority of, but not all, differences were explained by differences in
circulating immune cell populations. Pathway analysis showed an
increase in chemotaxis, migration, and myeloid cell trafficking in
patients with severe asthma, decreased B-lymphocyte development
and hematopoietic progenitor cells, and lymphoid organ
hypoplasia. Cluster analysis of DEGs led to the creation of
subgroups among the patients with severe asthma who differed in
molecular responses to oral corticosteroids.

Conclusions: Blood gene expression differences between clinically
defined subgroups of patients with asthma and individuals
without asthma, as well as subgroups of patients with severe asthma
defined by transcript profiles, show the value of blood analysis in
stratifying patients with asthma and identifying molecular pathways
for further study.
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Asthma is a complex disease that presents
in various clinical forms and degrees of
severity (1). Although clinical severity is
routinely used as an asthma classifier, it is
not stable (2) and does not take into
account the multiple underlying
pathobiological processes. A substantial
group of patients with severe asthma do not
respond to existing therapies and have the

greatest unmet needs (1, 3, 4). With the
exception of patients treated with the anti-
IgE antibody omalizumab, the majority are
treated with the same drugs despite
heterogeneous underlying pathobiological
mechanisms (5). In their efforts to stratify
patients, researchers have used mainly
clinical and pathophysiological parameters
to understand underlying mechanisms (5).
Recognizing the limitations of this
approach to asthma, investigators are
making significant efforts to stratify
patients with asthma using methods that
bypass traditional clinical biases (6, 7).

Subgroups of patients with asthma have
been identified using either mechanistic,
hypothesis-driven approaches (e.g., [8]) or
unbiased statistical analyses of clinical and
pathophysiological characteristics (9, 10).
In addition, molecular and genetic markers
have been considered with the goal of
understanding the pathobiological
mechanisms underlying each subgroup (6).
A subgroup of patients with mild/moderate
asthma expresses high levels of some
Th2-associated genes in airway epithelial
brushings and is characterized by
eosinophilic inflammation, atopy, and a
good clinical response to inhaled
corticosteroids (ICSs) (6). Although
generally accepted biomarker(s) for the
identification of T2 asthma do not exist yet,
a biomarker set composed of blood
eosinophil counts, fractional exhaled nitric
oxide, and serum periostin levels is
emerging as a predictor of corticosteroid
response (11). In contrast, patients who
lack some of the T2 features, the non-T2
asthma group, tend to be less responsive to
ICSs (6). Understanding their disease,
therefore, is important to developing
effective treatments (12, 13).

The heterogeneity of severe asthma
involves more than T2 gene expression
(14, 15). The researchers in the U-BIOPRED
(Unbiased Biomarkers in Prediction of
Respiratory Disease Outcomes) study of
severe asthma (16) obtained omics data from

bronchial biopsies, bronchial and nasal
brushings, sputum, blood, and urine (17). In
this article, we report a focused analysis of
gene expression in blood.

Blood is an important medium through
which inflammatory and immune cells, as
well as systemic treatment, reach the lungs.
Analysis of this compartment can provide
insight into pathobiological pathways
associated with disease severity or other
clinically relevant features. We had two
main objectives in this study. First, we
sought to identify the major differences in
blood transcript profiles and molecular
pathways between study participants
without asthma and those with asthma
stratified as severe and mild/moderate (3),
as well as whether this was affected by
treatment with oral corticosteroids (OCSs).
Our second aim was to use an unbiased
approach to cluster patients on the basis of
gene expression, independent of clinical
parameters, hypothesizing that this would
point to processes that transcend the
standard clinical strata and management
with current therapies. Some of the results
of these studies were previously reported in
the form of an abstract (18).

Methods

Study Population
U-BIOPRED is a multicenter prospective
cohort study involving 16 clinical centers in
11 European countries. The adult part of the
U-BIOPRED study consists of four cohorts
(16): (1) severe asthma and nonsmoking
(NSM) (n = 311), (2) severe asthma and
smoking (SM) (n = 110), (3) mild/moderate
asthma and NSM (n = 88), and (4)
nonasthma and NSM (n = 101)
(see METHODS section in the online
supplement for more details).
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At a Glance Commentary

Scientific Knowledge on the
Subject: Asthma is a heterogeneous
disease that responds only partially to
currently available therapies.
Understanding heterogeneity in severe
asthma at the molecular level and
identifying biomarkers characterizing
subgroups are essential to developing
new, targeted therapies and to selecting
patients most likely to respond to these
therapies.

What This Study Adds to the
Field: In this study, we detected
marked differences in gene expression
in blood cells between asthma and
individuals without asthma and
produced a severe asthma disease
signature composed of nearly 1,700
genes. On the basis of gene expression,
the population could be divided into
two clusters: a cluster enriched for
severe asthma (87%), which included
users of oral corticosteroids and
individuals with blood neutrophilia,
and a second cluster enriched for
mixed-severity asthma and individuals
without asthma. This study shows the
value of blood transcriptomics for the
identification of asthma stratification
biomarkers and for the unbiased
identification of molecular pathways of
interest. Follow-up studies are needed
to further the present findings.
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Declaration of Helsinki. It was approved
by the institutional review boards of all
the participating institutions and carried
out in adherence to the standards
set by the International Council for
Harmonization of Technical Requirements
for Pharmaceuticals for Human Use and
good clinical practice. All participants
provided written informed consent. The
study is registered with www.clinicaltrials.
gov (NCT01982162).

Samples
Blood samples were collected from 606
study participants (309 nonsmoking
patients with severe asthma, 110 smoking
patients with severe asthma, 87 nonsmoking
patients with mild/moderate asthma, and
100 nonsmoking individuals without
asthma).

Microarray Analysis
RNA was isolated using the PAXgene Blood
RNA kit (PreAnalytiX, Hombrechtikon,
Switzerland) with on-column DNase
treatment (QIAGEN, Valencia, CA). RNA
integrity was assessed using a 2100
Bioanalyzer (Agilent Technologies, Santa
Clara, CA). Samples with an RNA integrity
number greater than or equal to 6 were
processed for microarray as described
elsewhere (19) and hybridized onto
Affymetrix HT HG-U1331 PM arrays
using a GeneTitan instrument according to
Affymetrix technical protocols (Affymetrix,
Santa Clara, CA). The microarray data
are deposited in the Gene Expression
Omnibus database under accession
number GSE69683.

Data Analysis Sets
After RNA and microarray quality control
and exclusion of samples owing to
discrepancies with demographic data, the
498 samples available for analysis were
randomized into training and validation sets
(Table E1 in the online supplement).

Statistical Analysis
Data were normalized and log2 transformed
prior to statistical analyses. Differentially
expressed genes (DEGs) and gene
signatures were identified using analysis
of variance including covariates for RNA
integrity number, clinical site, and sex.
When age was examined as a covariate in
the main model, there were no significant
gene expression changes associated with
age. Initial comparisons were made in a

training set, and results were tested in a
separate validation set (Table E1). Both sets
were then combined for further analysis,
including clustering. Volcano plots showed
an area containing most null results
(99.99%), referred to as the patch of
disbelief (PoD). Findings outside the PoD
with a local false discovery rate less than or
equal to 0.05 were considered significant
(20, 21). Correlations were found with
differential cell counts as well as OCS use,
and these variables were included as
covariates in some analyses, as described in
the online supplement.

To discover asthma subgroups without
a priori hypotheses, unbiased hierarchical
clustering was performed on standardized
data using Euclidean distance and Ward’s
linkage method (see online supplement).
Ingenuity Pathway Analysis (QIAGEN,
Redwood City, CA) was used for functional
analysis of DEG sets and predictors of
upstream regulators.

Gene Correlation Network Analysis
Gene expression correlation matrices were
created using subsets of genes as described
in the text. Gene modules were identified
using scaled correlation matrices (22).

Topological Data Analysis
The transcriptomic data were clustered by
topological data analysis (TDA) (23–27).
TDA provides geometric representation of
the relationships between patient data and
variables in high-dimensional data sets.
TDA structures were generated using the
Ayasdi Cure application (Ayasdi, Menlo
Park, CA) with a norm correlation metric
and two neighborhood lenses (resolution,
38 bins; gain, 33.4; equalized). For further
details of data acquisition and analysis,
see the online supplement.

Results

Study Population
The demographic and clinical
characteristics of the participants included
in the gene expression analysis are
shown in Table 1. Females were more
highly represented in the severe
asthma/nonsmoking cohort, and the
median age in the mild/moderate asthma
and nonasthma cohorts was lower.
Approximately 40% of patients with severe
asthma reported using OCSs. The following
parameters were elevated in all the asthma

cohorts compared with the nonasthma
cohort: fractional exhaled nitric oxide, a
marker of inflammation in the lung; IgE;
white blood cell count; blood eosinophils;
and neutrophils. The increase in white
blood cell count was highest in patients
with severe asthma using OCSs, as well as
in smokers with severe asthma regardless of
OCS use (Figure E1).

Severe Asthma Disease Signature
Compared with individuals without asthma,
both the nonsmoking and smoking
patients with severe asthma had markedly
different gene expression profiles
(Figures 1A and 1B). Both severe asthma
cohorts had a larger number of DEGs
and larger fold changes for some of these
genes. Some of the DEGs were selective for
particular immune cell subtypes, and major
differences in expression were observed
in genes associated with eosinophils and
neutrophils (higher in the asthma groups)
and B cells (lower in the asthma groups)
(Table E2). There was good agreement
between gene expression differences (severe
asthma group vs. nonasthma group)
discovered in the training set compared
with the validation set (r = 0.83)
(Figure E2).

By comparison, patients with
mild/moderate asthma showed fewer
differences from participants
without asthma (Figure 1C). Most
disease/nonasthma gene expression ratios
in the severe and mild/moderate asthma
groups trended in the same direction, even
in cases where the differences were not
statistically significant. Although the
differences relative to participants without
asthma were greater in the severe asthma
group than in the mild/moderate asthma
group, there was a good correlation
between the groups (r = 0.76) (Figure E3).

A severe asthma disease signature
(SADS) was developed using data from the
combined data set. The collection of probe
sets outside the PoD from the severe asthma
versus nonasthma comparison was
designated the SADS; it contained 2,695
probe sets corresponding to 1,693 genes.
The top DEGs in severe asthma ranked by
significance are shown in Table 2, and the
full list is provided in Table E3.

Gene expression differences between
the patients with severe asthma and
individuals without asthma could be due
either to differences in cell populations or to
different activation states of the cells. To
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control for cell-count effects, the statistical
analysis was repeated with total white
blood cell counts, monocyte percentages,
lymphocytes, neutrophils, and eosinophils
as covariates in the analysis. This reduced
the number of probe sets with differential
expression from 2,695 to 268 (Figure E4 and
Table E4).

Forty percent of the patients with
severe asthma were receiving OCS
maintenance treatment, which can have an
effect on transcriptional regulation. The
steroid-inducible gene FKBP5 was easily
detected in the blood of the U-BIOPRED

participants (Figure E5), but levels were
elevated only in a subset of patients with
asthma taking OCSs, whereas ICSs did not
appear to have an effect on blood FKBP5
transcript levels (Figure E5).

When only patients with severe asthma
who were not taking OCSs were compared
with control participants without asthma,
the signature was reduced to 877 probe sets
(Table E5), of which 774 were shared with
the SADS. Thus, about 30% of the SADS was
not due to OCS use. A direct comparison of
patients with severe asthma who were using
OCSs with those not using OCSs showed

distinct differences between the groups
(Figure E6). There were 1,442 differentially
expressed probe sets corresponding to 893
genes. B-cell–associated genes had lower
expression among OCS users, and a small
number of eosinophil-associated genes had
higher expression in this group.

Hierarchical Clustering of the SADS
Hierarchical clustering using the full data set
and the probe sets in the SADS showed two
major patient clusters (Figure 2A). One of
the patient clusters contained more than
87% of patients with severe asthma (severe
asthma–enriched cluster [SA-EC]), whereas
the other contained approximately 58% of
patients with severe asthma (mixed cluster
[MC]) (Table 3). About 90% and 86% of
the nonasthma and mild/moderate asthma
groups, respectively, were assigned to
the MC.

To test the robustness of this clustering,
we generated severe asthma versus
nonasthma signatures separately in the
training set and the validation set. For
both data sets, their respective signatures
generated two main clusters, one
corresponding to the MC and the other to
the SA-EC. As in the full data set, more than
87% of participants in the SA-EC were from
the severe asthma cohort. The MC
contained about 88% and 84% individuals
without asthma and patients with
mild/moderate asthma, respectively.

The robustness of the clustering into
SA-EC and MC was tested further by using

Table 1. Demographic Characteristics

Characteristic

Severe
Asthma/Nonsmoking

(n = 246)

Severe
Asthma/Smoking

(n = 88)

Mild/Moderate
Asthma/Nonsmoking

(n = 77)

Nonasthmatic/
Nonsmoking

(n = 87 )

Sex
Male, n (%) 85 (34.6) 45 (51.1) 40 (51.9) 53 (60.9)
Female, n (%) 161 (65.4) 43 (48.9) 37 (48.1) 34 (39.1)

Age, yr* 53 (43–62) 55 (48–61) 39 (27–55) 37 (27–49)
White race, % 87.4 95.5 93.5 92.0
OCS dose normalized to

prednisolone, mg*†
10 (5.8–16.3) 10 (7.5–18.8) NA NA

Atopy, positive/negative/unavailable 180/47/19 54/27/7 68/8/1 32/44/11
FEV1, % predicted* 67 (50–84) 65 (53–75) 92 (77–102) 103 (94–110)
FENO, ppb* 26 (15.5–48.9) 25 (11.5–48) 25.5 (18.4–45.4) 19 (13.8–26.8)
IgE, IU/ml* 112 (44–317) 140 (70–378) 102 (53–244) 27 (9–68)
Blood eosinophils, 103/ml* 0.20 (0.10–0.40) 0.23 (0.12–0.40) 0.20 (0.10–0.30) 0.10 (0.10–0.20)
Blood neutrophils, 103/ml* 4.7 (3.5–6.1) 4.8 (3.8–6.6) 3.3 (2.7–4.5) 3.0 (2.4–3.9)
Blood lymphocytes, 103/ml* 1.9 (1.5–2.4) 2.1 (1.6–2.6) 1.7 (1.5–2.1) 1.7 (1.4–2.2)
Total white blood cells, 103/ml* 7.8 (6.2–9.4) 7.9 (6.7–9.8) 5.8 (5.1–7.2) 5.3 (4.7–6.4)

Definition of abbreviations: FENO = fractional exhaled nitric oxide; NA = not applicable; OCS = oral corticosteroid.
*Median (interquartile range).
†Proportions of 40% and 37.5% of patients used OCSs in the severe asthma/nonsmoking and severe asthma/smoking cohorts, respectively.
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Figure 1. Comparison of nonsmoking patients with mild/moderate asthma as well as nonsmoking
and smoking patients with severe asthma with nonsmoking individuals without asthma. (A)
Nonsmoking patients with severe asthma. (B) Smoking patients with severe asthma. (C) Patients with
mild/moderate asthma. A positive fold difference indicates higher expression in patients with asthma
than in individuals without asthma, and a negative fold difference indicates lower expression.
Differentially expressed genes that were not assigned a cell type (purple) are ubiquitously expressed in
immune cells. Light purple shaded areas represent patches of disbelief (nonsignificant differences).
NK = natural killer cells; NKT = natural killer T cells.
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the signature gene list generated from the
training set to cluster the validation set and
vice versa. There was a significant overlap
between this and the original classification
(P = 3e-10 by Fisher’s exact test). The
signature gene list from the validation
set was then used to cluster the training
set, again with significant overlap
(P = 2e-5).

TDA of the SADS
TDA clustering was first performed on the
training and validation gene expression sets
and then on the full data set, thereby
creating three TDA networks. TDA
reproduced the two clusters identified by
hierarchical clustering, with good separation
of the SA-EC and MC clusters. (Figure 2B).
In all three networks, the participants
identified as members of the SA-EC
(presented as red nodes in Figure 2B)
localized to the top part of the structure,
whereas the MC participants (presented as
blue nodes in Figure 2B) localized to the
bottom part. There was little mixing of the

SA-EC and MC and edges throughout the
structures, supporting the classification by
hierarchical clustering.

Differences between Asthma Clusters
The proportion of OCS users was greater in
the SA-EC: 60 of 101 (2 participants had no
information on OCS use) patients with
severe asthma in the SA-EC used OCSs
(59%; 95% confidence interval, 50–69%)
versus 39 of 131 in the MC (30%; 95%
confidence interval, 22–38%). There were
also differences in blood cell counts
between the clusters, with SA-EC having
more total white cells and neutrophils but
fewer lymphocytes (Figure E7).

When overlaid onto the TDA structure,
participants with high neutrophil counts,
defined as greater than 60% neutrophils in
blood, were distributed similarly to patients
from the SA-EC (Figure 2B, right). In the
MC, lymphocyte counts were elevated in
the OCS users compared with nonusers,
whereas in the SA-EC, neutrophil counts
were elevated in OCS users and eosinophil

counts trended lower (P = 0.07 by analysis
of variance). No other clinical or
pathophysiological variables were clearly
associated with the MC and SA-EC.

Pathway Analysis
Notable pathways upregulated in peripheral
blood of patients with severe asthma
compared with individuals without asthma
were chemotaxis, mobilization, migration,
and infiltration of myeloid cells (Table 4).
Gene sets similar to those affecting myeloid
cells were involved in functions associated
with decreased viral and bacterial
infections. In the peripheral blood of
patients with severe asthma, there also was
a decrease in pathways related to the
abundance of B lymphocytes and
hematopoietic progenitor cells, B-cell
development, and hypoplasia of lymphoid
organs.

Table 5 shows the five top upstream
activators (positive activation scores) and
inhibitors (negative activation scores). The
upstream regulators included cytokines,

Table 2. Genes with Most Significant Differential Expression between Patients with Severe Asthma and Individuals without Asthma

Higher Expression in Severe Asthma Lower Expression in Severe Asthma

Gene Symbol Fold Difference P Value lFDR Gene Symbol Fold Difference P Value lFDR

DEFA4 2.58 7.13E-10 0.00 TCL1A 21.71 9.51E-07 0.00
OLFM4 2.43 2.27E-07 0.00 EBF1 21.69 4.56E-09 0.00
CEACAM8 2.40 2.17E-09 0.00 TSPAN13 21.69 1.91E-12 0.00
LTF 2.20 5.79E-09 0.00 IGK@ 21.68 1.31E-09 0.00
MMP8 2.18 9.98E-09 0.00 LRRN3 21.66 4.83E-07 0.00
BPI 2.03 3.57E-09 0.00 CUX2 21.49 2.63E-09 0.00
LCN2 2.03 5.45E-09 0.00 AFF3 21.47 8.43E-08 0.00
CRISP3 1.98 8.07E-09 0.00 BLNK 21.46 2.89E-09 0.00
RNASE3 1.98 2.65E-08 0.00 AKAP2 21.44 1.96E-08 0.00
CEACAM6 1.97 8.44E-09 0.00 STRBP 21.43 1.83E-09 0.00
CCL23 1.86 3.52E-06 0.00 IL6ST 21.42 2.30E-09 0.00
HP 1.75 2.52E-09 0.00 MAN1C1 21.40 1.59E-08 0.00
DEFA1 1.72 3.04E-10 0.00 FAM129C 21.39 3.69E-08 0.00
MS4A3 1.69 1.09E-06 0.00 TCF4 21.39 5.04E-11 0.00
CTSG 1.68 5.90E-07 0.00 TTN 21.38 5.81E-09 0.00
CD24 1.62 5.34E-08 0.00 CCR6 21.37 3.00E-09 0.00
ANXA3 1.60 2.33E-08 0.00 RAB11FIP3 21.37 1.20E-09 0.00
SLPI 1.60 2.16E-09 0.00 BCL11A 21.36 2.99E-09 0.00
CAMP 1.58 6.95E-09 0.00 GPM6B 21.36 8.25E-10 0.00
RNASE2 1.56 1.57E-07 0.00 RAB30 21.35 7.20E-09 0.00
TCN1 1.52 7.10E-08 0.00 PDE7A 21.34 1.41E-10 0.00
F5 1.47 1.21E-10 0.00 SLFNL1 21.31 6.97E-09 0.00
CEBPE 1.46 6.86E-09 0.00 CCDC50 21.29 3.15E-09 0.00
GAPT 1.36 4.56E-10 0.00 ENAM 21.26 3.80E-09 0.00
PNPLA1 1.35 1.40E-08 0.00 LUC7L 21.25 9.86E-10 0.00
STXBP5 1.31 1.04E-08 0.00 NSUN6 21.25 2.79E-09 0.00
ACSL1 1.30 6.85E-09 0.00 TGIF2 21.25 7.67E-10 0.00
ALAS1 1.21 1.46E-09 0.00 ZBTB20 21.25 1.17E-10 0.00
AMPD3 1.19 8.84E-10 0.00 CBFA2T2 21.22 1.30E-09 0.00
MYD88 1.18 1.70E-10 0.00 KIAA0355 21.20 3.76E-10 0.00

Definition of abbreviation: lFDR = local false discovery rate.
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enzymes, transcription factors, and
fluticasone. Because OCS use was a
clinical variable and there were apparent
differences in the effect of OCS use in the
SA-EC and the MC, we looked for effects
of OCS use on gene expression by cluster.
In the MC, there were no gene expression
differences between OCS users and
nonusers, whereas extensive differences
were present in the SA-EC. Pathway
analysis of the DEGs between OCS users
and nonusers in the SA-EC showed that
these genes are known corticosteroid
targets. The top three predicted upstream
regulators were dexamethasone, fluticasone,
and prednisolone (data not shown).

Discussion

To our knowledge, this is the first
comprehensive study of whole-genome
expression in circulating cells in asthma, a
complex respiratory disease in which the
contribution of circulating inflammatory
cells is poorly understood. We also believe it
is the first study to explore the value of
transcriptomic analysis of blood cells for
asthma stratification. It shows that gene
expression does not follow a standard
clinical classification that is routinely used in
clinical practice and for drug development.
Prespecified statistical analyses were first
applied to data from asthma cohorts defined

by the U-BIOPRED consensus group (3)
and to data from participants without
asthma. Marked differences between
individuals without asthma and patients
with severe asthma, as well as fewer
differences between patients with
mild/moderate asthma and participants
without asthma, suggest a continuum of
pathobiology from mild/moderate to severe
disease. We then applied unbiased
clustering, the principal objective of
U-BIOPRED, which stratified the study
participants into two main clusters: an
SA-EC, which consisted mostly of
patients with severe asthma, and an MC,
consisting of about 58% patients with

Non As
Mod
Sev

Sev Sm

A
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0

2

Validation data set
n = 170

Whole data set
n = 498
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n = 328
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Severe
asthma-
enrichedMixed

Cluster Blood neutrophil count

B

Figure 2. (A) Two-dimensional clustering of the severe asthma disease signature. The heat map was generated using all the samples in the study and the
genes that were differentially expressed between individuals without asthma and patients with severe asthma. Turquoise branches represent class
enriched in severe asthma; red branches represent mixed class containing 90% of the participants without asthma and 86% of the patients with
mild/moderate asthma. Blue squares represent nonsmoking patients with severe asthma; turquoise squares represent smoking patients with severe
asthma; brown squares represent patients with mild/moderate asthma; red squares represent individuals without asthma. (B) Topological data analysis
(TDA). (Left) The distribution of classes derived from hierarchical clustering of the severe asthma disease signature in a network created by TDA using data
from the training set (top; n = 328), the validation set (middle; n = 170), and the whole data set (bottom; n = 498). Red and blue nodes represent
participants identified by hierarchical clustering as being within the severe asthma–enriched cluster and the mixed cluster, respectively. (Right) The
distribution of study participants with high neutrophil cell counts in TDA structures. Red nodes represent those with blood neutrophil cell counts greater
than 60%, and blue nodes represent those with blood neutrophil cell counts less than 60%. Metric: norm correlation. Lenses: neighborhood lens 1
(resolution, 38 bins; gain,33.4), neighborhood lens 2 (resolution, 38 bins; gain,33.4). Mod = patients with moderate asthma; Non As = individuals without
asthma; Sev = patients with severe asthma; Sev Sm= smoking patients with severe asthma.
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severe asthma. More than 85% of the
enrolled participants without asthma and
patients with mild/moderate asthma were
in the MC.

In the pairwise comparisons between
the clinically defined nonasthma and severe
asthma cohorts, several DEGs expressed in
specific immune cells stood out. Genes
associated with B lymphocytes, including
TCL1A, EBF1, TSPAN13, IGK@, BLNK, and
FAM129C, and genes associated with
T cells (IL6ST, LRRN3, and MAN1C1)
([28, 29] and unpublished Amgen data) had
lower expression in patients with severe
asthma. Other downregulated genes in
patients with severe asthma (AKAP2,
STRBP, TCF4, BCL11A, RAB30, and
CCDC50) have been reported as most
highly expressed in B lymphocytes but are
also present in other cell types ([28, 29]
and unpublished Amgen data). Genes
associated mainly with granulocytes with
some contributions from T cells (e.g.,
DEF4A, OFLM4, CEACAM8, LTF, CCL23,
or BPI) ([28, 29] and unpublished Amgen
data) had higher expression in patients with

severe asthma. Recently, signatures of
eosinophilic and granulocytic inflammatory
signals in whole blood were found to be
associated with lower asthma control (30).
Of the six triggering receptors expressed
on myeloid cells-1/LPS signaling genes,
CCL23, OLIG1, and OLIG2 were contained
in the SADS.

The number of DEGs was reduced by
about 90% when blood cell counts were
included as covariates. The DEGs that
persisted may indicate altered cell function,
although we cannot exclude the possibility
that additional cell types for which we did
not have frequency data contributed to the
SADS. After we adjusted for cell counts,
genes associated with B lymphocytes and
Ingenuity Pathway Analysis functions such
as lymphoid organ hypoplasia and decrease
in B-lymphocyte development remained
significant. Whereas these differences were
clearly detectable in the severe asthma
group, they were reduced or absent in
the mild/moderate asthma group. This
observation is consistent with the notion
that effects on B lymphocytes are due either

to the severity of the disease itself or to OCS
treatment in patients with severe asthma.
Indeed, our analysis of OCS users with
severe asthma and OCS nonusers showed a
considerable number of DEGs. About 10%
of the DEGs with lower expression in
OCS users were B-cell selective. However,
in this comparison, we cannot rule out
contributions from disease, because OCS
users by definition have more severe disease
than OCS nonusers. Furthermore, the
number of probe sets in a signature derived
from a comparison of patients with severe
asthma not using OCSs with individuals
without asthma was considerably less than
the SADS. As in the SADS, B- and
T-cell–selective genes had lower expression
in the asthma group, and eosinophil-
selective genes had higher expression.
In addition to the absence of OCS effects,
better asthma control and, therefore, less
severe disease and the smaller sample size
likely contributed to this observation.

Consistent with the observed gene
expression differences, the top upstream
inhibitors included PAX5, TCF3, and MYC,
all of which are transcriptional regulators
with roles in B- and T-cell development,
early B-cell differentiation, or lymphoid
carcinogenesis (31, 32). The top upstream
activators included genes involved in
activation of granulocyte production,
differentiation, and function (upstream
regulators CSF3, NOS2, and CEBPE)
(33–35). The identification of the topical
ICS fluticasone as an upstream activator
confirmed the presence of steroid effects on
gene expression. TGM2 is a cross-linking
enzyme with a role in cell adhesion,
wound healing, proliferation, and cellular
motility (36). Its expression is increased
in inflammatory and allergic conditions,
and there is evidence for a role of TGM2
in allergic asthma (37, 38). It is also the
implicated autoantigen in celiac disease (39).

An important consideration for the
observations made in this study is whether
they reflect clinical severity of asthma or
treatment. Severity is defined by symptoms,
lung physiology, and the various types and
doses of medications used for symptom
control (5). Of these three elements,
treatment with OCSs potentially has the
greatest impact on gene expression of
circulating cells. OCS is therefore the
most important confounder because of
greater systemic bioavailability than
ICSs, which have a predominantly local
antiinflammatory effect (40). Furthermore,

Table 3. Representation of the Four Cohorts in the Two Transcript Classes

Cohort

Cluster Classification, n (%)

Mixed
Cluster

Severe
Asthma–enriched Cluster

Individuals without asthma, NSM 78 (22.8) 9 (5.8)
Patients with mild/moderate asthma, NSM 66 (19.3) 11 (7.1)
Patients with severe asthma, NSM 143 (41.8) 103 (66.0)
Patients with severe asthma, SM 55 (16.1) 33 (21.2)
Total 342 (100) 156 (100)

Definition of abbreviations: NSM = nonsmokers; SM = smokers.

Table 4. Functional Ingenuity Pathway Analysis

Summary of Functions Total Genes

Increased chemotaxis, recruitment and infiltration of myeloid cells
such as neutrophils, increased angiogenesis, and arthritis

448

Increase in protein metabolism and decrease in cancer 347
Decreased quantity and differentiation of lymphocytes and
mononuclear leukocytes

293

Decreased viral infection 282
Increased apoptosis and decreased cell survival 219
Increased migration of mononuclear leukocytes and killing of bacteria;
decrease in infections, including fungal infections

211

Hypoplasia of lymphoid organs and decreased quantity of
hematopoietic progenitor cells, increase in quantity of double-negative
T cells

93

Decreased development of pre-B, pro-B, and B lymphocytes 72
Increased aggregation and coagulation of blood cells 54
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the inflammatory milieu within the lungs
may influence gene expression in blood cells,
partly because many of them recirculate and
partly because of systemic mediator signals
from the lungs. Corticosteroids inhibit
neutrophil apoptosis and contribute to
neutrophil activation (41–43), and they are
likely to account, at least partly, for the
observed blood neutrophilia. Corticosteroids
also reduce eosinophil longevity (44).
Furthermore, glucocorticoids induce cell
death in lymphoid cells and are included
in chemotherapy regimens for lymphoid
malignancies (45). However, the doses used
in asthma therapy may not be sufficient to
kill lymphoid cells, and no reduction in
lymphoid cell count was observed. Therefore,
corticosteroid effects on lymphocyte function
are probably more relevant.

Corticosteroids act through specific
receptors, including the nuclear receptor
subfamily 3, group C (NR3C), which
function as ligand-dependent
transcriptional regulators (46). In the
absence of robust published data exploring
the effects of OCS on blood cell gene
expression in a human population in vivo,
FKBP5 expression was used to gauge the
effects of asthma therapy. FKBP5 is an
NR3C chaperone, is highly expressed in the
blood of both individuals without and with
asthma, and is itself corticosteroid inducible
(47). With the exception of one patient with
asthma, all the OCS users with elevated
FKBP5 levels were in the SA-EC. The
segregation of patients with elevated FKBP5
levels into the SA-EC, especially the
nonsmokers, suggests that disease severity
is associated with high FKBP5 expression.
Whether this is due to underlying disease
mechanisms or to treatment with OCSs is
unclear. Whether the high variability within
each patient group reflects interindividual

differences in the ability to respond to
corticosteroids, possibly owing to NR3C or
FKBP5 genetic variation (48), the presence
of oxidative/nitrosative stress (NOS2
above), or the lack of adherence to asthma
treatment, requires further analysis.

This study creates a solid basis for
further assessment of the clinical value of the
observed DEGs. The two classes of patients
distinguished by blood transcript profiling
did not align in a simple way with clinical
characteristics, so the clinical applicability
has yet to be defined. Gene sets identifying
the two clusters can be developed on the
basis of data from this study and can be
tested prospectively in observational and
intervention studies. Observational studies
would serve to validate the findings of this
study, whereas intervention studies could
provide insight into appropriate courses of
treatment for the two classes of patients.

Blood eosinophilia is now widely used
as a stratification biomarker of so-called
T2-type asthma (49–52). Because the reporting
of eosinophil counts can vary between
laboratories in multicenter studies, the
expression of several eosinophil-selective
genes (ALOX15, ADORA3, or CCL23)
found in this study to correlate with
eosinophil counts could be used for a more
consistent measure of eosinophil numbers.
However, blood transcript analysis cannot
be used to stratify patients on the basis of
other genes associated with T2 asthma:
POSTN, CLCA1, and SERPINB2. These T2
genes were shown to be elevated in lung
epithelial cells and in steroid-naive asthma
(53) and to be responsive to IL-13 and
corticosteroids (53, 54), but only SERPINB2
transcripts were detectable in blood in the
present study, likely derived from myeloid
cells. Furthermore, this transcript was not
elevated in patients with asthma, and there

was no indication of downregulation in
patients taking maintenance OCSs. Thus,
these genes appear to play a role in T2-high
or T2-low classification only in lung
samples and not in blood.

One limitation of this study is that
a number of clinical outcomes used in
U-BIOPRED relied on self-reporting
by the participants, which is subject to
greater inaccuracy than measurements of
physiological or pathobiological biomarkers.
For proper interpretation of blood transcript
profiling data, it is important to have reliable
information on OCS use. Nonadherence
to treatment by patients with severe asthma
is estimated to be 30 to 70% (55). In
U-BIOPRED, participants were required to
have been under follow-up by a respiratory
physician for at least 6 months, while
their asthma control was optimized and
medication adherence assessed using the
Medication Adherence Report Scale (16).
The average Medication Adherence Report
Scale score among nonsmoking patients
with severe asthma was 22.44, suggesting
good adherence to treatment. However,
self-reported adherence tends to overestimate
actual adherence to treatment (56).
Furthermore, some patients with severe
asthma show relative corticosteroid
insensitivity (57), which was not assessed in
this study. The SA-EC cluster of asthma
included patients not taking OCSs, but they
still had expression profiles that were more
similar to those of patients with severe asthma
taking OCSs in the SA-EC than the patients
with severe asthma in the MC cluster.

In summary, this study provides
convincing evidence of differential gene
expression in the blood of patients with
asthma. Our study shows, for the first time
to our knowledge, major differences in the
activity of circulating cells that do not follow
the currently applied clinical classification
based on severity of asthma. The findings
presented here are hypothesis generating,
and clinical studies are needed to determine
the utility of stratifying markers derived
from this study. Follow-up biological studies
may lead to new insights into asthma disease
mechanisms and may open new avenues for
therapeutic intervention. n
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of this article at www.atsjournals.org.
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Table 5. Ingenuity Pathway Analysis of Top Upstream Regulators and Inhibitors

Upstream
Regulator Molecule Type

P Value
of Overlap

Activation
z-Score

CSF3 Cytokine 9.18E-07 4.47
TGM2 Enzyme 4.09E-08 4.08
NOS2 Enzyme 1.00E100 3.52
Fluticasone Chemical drug 1.19E-05 3.38
CEBPE Transcription regulator 4.58E-04 3.11
PAX5 Transcription regulator 2.94E-06 22.76
TCF3 Transcription regulator 1.41E-01 22.80
Immunoglobulin Complex 1.10E-05 23.29
MKL2 Transcription regulator 1.73E-03 23.32
MYC Transcription regulator 1.15E-04 24.83
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