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ABSTRACT: Analysis of induced sputum supernatant is a minimally invasive approach to study
the epithelial lining fluid and, thereby, provide insight into normal lung biology and the patho-
biology of lung diseases. We present here a novel proteomics approach to sputum analysis
developed within the U-BIOPRED (unbiased biomarkers predictive of respiratory disease outcomes)
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■ INTRODUCTION
Sputum induction is a widely applied method of sampling the
epithelial lining fluid that lines the lower airways constituting the
tracheobronchial tree. It enables assessment of both the cellular
and extracellular environments in the lung1−7 and is particularly
useful in the study of inflammatory respiratory diseases, pro-
viding insight into the immune and structural cell populations
and their secreted products. Initial studies of induced sputum
focused on inflammatory cell counts and targeted quantification
of soluble proteins by enzyme-linked immunosorbent assay
(ELISA). Such analyses identified several induced sputum bio-
markers as valuable in the description of inflammation in
common chronic airway diseases including asthma and chronic
obstructive pulmonary disease (COPD),8,9 providing insight
into determinants of disease severity9 and relevant pathophysio-
logical abnormalities, such as airway hyperresponsiveness10 and
changes in airway geometry.11 Combined with studies of cell
function such as chemotactic activity, quantification of cytokines
and chemokines in the sputum fluid phase has provided a better
understanding of the extent to which individual mediators
contribute to inflammation, thereby providing initial stratifica-
tion of respiratory disease.
Methods for global, unbiased analysis, that do not select a

priori which analytes are measured, including transcriptomics,
proteomics and lipidomics, appear useful for stratifying dis-
ease.12−17 However, only a limited number of unbiased pro-
teomic studies focusing on the lungs have been published to date.
Ten years ago, we described the first sputum proteome, applying
a shotgun method to an induced sputum sample from a female
smoker with no detectable evidence of lung disease.2 Since then,
there have been a number of reports of this approach in
COPD18,19 including a study highlighting the utility of protein
network analysis in sputum,20 and a large study combining
proteomic and transcriptomic analyses.21 Likewise, limited
studies of sputum have been performed to study asthma, and
some have been relatively low throughput.22,23 Apart from one
study, by Titz et al.,21 coverage of the sputum proteome remains
low. Our previous study highlighted some overlap between
sputum proteomes and proteomes of other sample types, namely
bronchoalveolar lavage (BAL) and saliva. In recent years,
attention has been drawn to the repeated failure of published
biomarkers to translate to the clinic.25−29 Such failure is often
attributable to study design and validation, insufficient sample
size and inappropriate experimental methodology. Problems
with sample size are beginning to be addressed in proteomics,30

particularly with the advent of data independent approaches such

as MSE,31,32 which allow absolute comparison of samples without
the inherent limitations associated with multiplexing, labeling or
spectral counting-based quantitation,.33−35 Despite the utility of
MSE for large clinical studies, there is very little information on
the effect of measuring samples over extended periods and
resulting data variability. The approach to quality control in the
analysis of human BAL samples using repeated measurements
and pooled samples published by the Moseley group at Duke
University36,37 is a standout example of the necessary approach
required for clinical studies; however, sample sizes in these
studies have been relatively small.
In the current study, we have applied state of the art

quantitative HDMSE analysis to a large set of sputum samples to
advance on the sputum proteome previously reported.2 As part
of the method evaluation, we explored the impact of granulocytic
infiltration of the airways, participant gender and other com-
mon demographics on the sputum proteome. Given the high
prevalence of allergic sensitization to common airborne allergens
(e.g., house dust mite and pollens) in the general population, we
also examined how atopy, defined by sensitization to at least one
common aero-allergen, affects the sputum proteome. As a key
component of the study, we assessed variability in proteomic
measurements and considered the impact of such variability on
biomarker discovery. Using repeated measurements, pooled
samples, comparison between individuals and to serum samples
from the same study participants, we assessed the likely source of
variability in measurements on a protein by protein basis. We dis-
cuss the impact of variability on effective sample size and sta-
tistical power for comparative studies. Finally, we have per-
formed an in-depth analysis of tissue and cellular origins of
proteins from previous proteomic studies and defined the acces-
sible functional proteomic space using functional enrichment
analysis.

■ MATERIALS AND METHODS

Study Design and Participant Characteristics

The U-BIOPRED study was performed in 14 European clinical
centers with extensive experience in sputum induction and
processing. The clinical study has been described elsewhere39

and the protocol was approved by all local Ethics Review Boards.
Participants gave their written informed consent for extensive
characterization using routine clinical protocols, including lung
function tests, assessment of sensitization to common aero-
allergens, and hematological and biochemistry blood tests
(reported in detail in Shaw et al., 201538). Samples were stored
in a central biobank (CIGMR Biobank, University of Manchester)
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where they were blinded. Identity of the samples were unblinded
only after all the mass spectrometric analyses and data pre-
processing had been completed.
Forty healthy individuals (mean age 36.9 years, range 18−65,

70% male), provided sputum samples considered representative
of the bronchial compartment, i.e., ≤40% contaminating
squamous cells (Table 1). The frequency of atopy, demonstrated

by positive skin or serum IgE specific for at least one common
aero-allergen test, was 32.5%. The atopic and nonatopic par-
ticipants did not differ in respect of sputum cell counts, including
sputum eosinophils (<2% of total inflammatory cells in all par-
ticipants), blood eosinophils, and lung function. As expected,
total serum IgE concentrations were higher in atopic individuals
(p < 5 × 10−5), but, surprisingly, serum LDH was also slightly
higher in the atopic participants (p = 0.01) while alkaline
phosphatase was lower (p = 0.01).
Sputum Induction and Processing

Sputum induction with nebulized hypertonic saline (4.5% NaCl)
and sample processing were performed in accordance with the
recommendations of the European Respiratory Society Task
Force on induced sputum methods.39 Uniformity of methods
was ensured by all study sites using standard operating pro-
cedures (SOP) and centralized training. For consistency required
for comparison with proteomes in patients with disease (asthma
or COPD), all participants were premedicated with the β2-agonist,
salbutamol, given as standard, to prevent excessive bronchocon-
striction in patients with airways disease.
InducedMucoid portions of the induced sputumwere selected

with forceps to reduce salivary contamination, weighed and solu-
bilized at room temperature with 6.8 mMdithioerythritol (DTE)
in HEPES buffered saline, added at a 4:1 w/v ratio. The solution
was filtered through a 100-μm filter, centrifuged at 400g to remove
the cell pellet, further centrifuged at 12 000g to remove cell
debris, both at 4 °C, and stored at −80 °C. The cell pellets were
processed for quantification of alive or dead respiratory cells,
squamous cells and differential inflammatory cell counts (by Diff-
Quick rapid Romanowsky stain); eosinophil, neutrophil, macro-
phage/monocyte, lymphocyte and mast cell/basophil counts
were reported as percentages of total inflammatory cells, while
squamous cells were reported as a percentage of total cell counts.
Protein Isolation and Preparation for Analysis

Sputum samples were thawed to room temperature before taking
100-μL aliquots for extraction of lipids using a semiautomated

Bligh−Dyer protocol (Bligh and Dyer, 1959) on a robotic liquid
handling platform (Freedom EVO 100; TECAN, Man̈nedorf,
Switzerland). Briefly, each sample was made up to a volume of
800 μLwith 0.9% saline solution before adding 2mL ofmethanol
(MeOH) and 1 mL of dichloromethane (DCM) and 10 μL of
antioxidant (5 mg mL−1 butylated hydroxytoluene in MeOH).
Samples were centrifuged at 1000g for 10 min at 10 °C to pro-
duce protein pellets which were snap-frozen in liquid nitrogen
and stored at −80 °C.
In preparation for analysis, the frozen protein pellets were

thawed to room temperature, dissolved in 150 μL of 50%
trifluoroethanol, 50 mM ammonium bicarbonate and heated
at 60 °C for 30 min. A pool for quality control was prepared
with equal protein amounts from 40 different sputum samples
(including healthy participants and participants with a diagnosis
of asthma). Pool samples were processed and analyzed in parallel
in batches containing 11 analytical samples and one pool. Dis-
solved protein pellets were reduced, alkylated and digested with
trypsin. Peptide samples were filtered using a 10 KDa cutoff
ultrafiltration device (Millipore) and the filtrate lyophilized
in vacuo. Samples were dissolved in 3% acetonitrile (ACN), 0.1%
trifluoroacetic acid (TFA) in preparation for reverse phase
cleanup, performed according to the manufacturer’s instructions
using C18 spin tips (Protea Biosciences). Following elution,
peptides were lyophilized and stored at −80 °C prior to analysis.

Serum Collection and Processing

Clotted venous blood samples were centrifuged at 1000g for
10 min, and collected supernatants stored at −80 °C. A pooled
serum sample was created as for sputum. In order to increase the
number of identifications, the 12 most abundant proteins were
immunodepleted using disposable agarose columns (Pierce/
Thermo-Fisher) and eluates reduced, alkylated, digested and
lyophilized. Peptide extracts were then resuspended in 3% ACN,
0.1% TFA and desalted using 96 well RP solid phase extraction
plates (3 M Empore). Eluates were transferred to separate
microcentrifuge tubes, lyophilized and stored on ice until mass
spectrometry.

Mass Spectrometry

Peptide extracts were resuspended in buffer A, (3% ACN, 0.1%
Formic acid (v/v) and the concentrationmeasured using a Direct
Detect System (Millipore). An internal standardmixture of E. coli
ClpB Hi3 standard (Waters), yeast enolase (ENO) and yeast
alcohol dehydrogenase (ADH) was added to a final concen-
tration in 20 μL of 250 ng/μL sputum peptide, 12.5 fmol/μL
ClpB, 12.5 fmol/μL ENO, and 8.75 fmol/μL ADH (serum was
25% more concentrated).
Samples were analyzed in duplicate, sequentially (not spread

across batches), via HDMSE on a Waters Synapt G2S high
definition mass spectrometer coupled to a nanoAcquity UPLC
system. 4 μL of peptide extract was injected onto a C18 BEH
trapping column (Waters) and washed with buffer A for 5 min at
5 μL/min. Peptides were separated using a 25 cm T3 HSS C18
analytical column (Waters) with a linear gradient of 3−50%
ACN+ 0.1% formic acid over 50min at a flow rate of 0.3 μL/min.
Eluted samples were sprayed directly into the mass spectrometer
operating inMSEmode. Data were acquired from 50 to 2000m/z
with the quadrupole in RFmode using alternate low and elevated
collision energy (CE) scans, resolution of 35 000. Low CE was
5 V and elevated CE ramp from 15 to 40 V. Ion mobility separa-
tion was implemented prior to fragmentation using a wave
velocity of 650 m/s and wave height of 40 V. The lock mass Glu-
fibrinopeptide, (M + 2H)+2, m/z = 785.8426) was infused at a

Table 1. Demographics and Sputum Cell Characteristics

N 40

Age (mean ± SEM) 35.4 ± 2.3

Weight (kg) (mean ± SEM) 85 ± 2.14

BMI (mean ± SEM) 25.62 ± 0.51

Gender (F/M) 29/11

Race (% white Caucasian) 90%

Smoking history

Ex-smokers (count, % of total) 5 (12.5%)

Atopy positive (count, % of total) 13 (32.5%)

Positive IgE Assay (count, % of total) 7 (17.5%)

Positive Skin Prick Assay (count, % of total) 12 (30.0%)

FEV1/FVC predicted % (mean ± SEM) 83.58 ± 0.38

Sputum % Neutrophil (median, range) 37.95 (2.71−88.34)
Sputum % Eosinophil (median, range) 0.00 (0.00−2.57)
Sputum % Lymphocytes (median, range) 1.22 (0.00−7.76)
Sputum % Macrophages (median, range) 60.30 (7.11−96.10)
Sputum % Squamous epithelial (median, range) 14.70 (0.00−39.20)
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concentration of 100 fmol/μL at a flow rate of 250 nL/min and
acquired every 60 s.

Database Searching and Curation

Raw data were processed using a custom package (Regression
tester) based upon executable files from ProteinLynx Global
Server 3.0 (Waters). The optimal setting for peak detection
across the data set was determined using Threshold inspector
(Waters) and these thresholds were applied: low energy = 100
counts; high energy = 30 (for serum this was set to 25) and a total
energy count threshold of 750. Database searches were
performed using regression tester and searched against the
Uniprot human reference database (20/11/2014; 20 229 entries)
with added sequence information for internal standards. A max-
imum of two missed cleavages was allowed for tryptic digestion
and the variable modification was set to contain oxidation of
methionine and carboxyamidomethylation of cysteine. Precursor
and product ion mass tolerances were calculated automatically
during data processing and the false discovery rate (FDR) was set
at 4%. We report only proteins identified in at least two patient
samples, which results in a FDR below 1%.40 Only proteins iden-
tified in each technical replicate of at least two patient samples
were considered; thus, the false positive rate is minimized, since
chemical noise is random in nature and does not replicate across
injections. Quantity was estimated in absolute amounts using the
Top 3 method.32,41 The ion accounting output files42 were
compiled and summary information generated from search log
files using custom Python scripts. Information contained in ion
accounting files were collated into a single .csv document using a
custom Python script.

Data Filtering and Normalization

Protein identifications collated from the ion accounting files were
further quality filtered by allowing only identifications with the
following criteria: identification in at least two separate samples
(not including replicate injections), a process that required at
least three high quality unmodified peptides using the Top 3
method, and 2 peptides with at least 4 fragment ions for each
protein. All other protein identities were removed. Proteins were
first ranked according to coverage across the samples, and then
each protein entry was ranked according to the order in which
they were run. QC information was added for each sample (batch
information, protein concentration, ion counts). First, differ-
ences in run-to-run intensity (loading) were adjusted by normal-
izing each run to the sum of top 3 intensities of the proteins up to
the point where the sample set reached 10% missing data (we
refer to this as “top-90 normalization”). ComBat was used to
adjust for batch to batch variation.43

Inforsense software (ID Business Solutions, Guildford, UK)
was applied to generated heat maps for the top 150 proteins
using both “top 3 peptide intensity sum” (a proxy for concentra-
tion) and peptide concentrations (expressed in fmol) on column
calculated from internal standards. Sample-wise correlation plots
were created using Inferno RDN (http://omics.pnl.gov/
software/infernordn).44 Heat maps and correlation plots were
inspected for poor samples or injections; those with very low or
no ID’s and/or poor correlation were removed from the data set.
Samples were analyzed in duplicate and the average intensity

values used for analysis. For the purpose of quality control, sev-
eral analyses were performed. Replicate injections were inspected
for consistency in quantitation. To achieve this, an average of the
two injections “top 3 peptide intensity sum” was used and a
distance matrix calculated by taking the Euclidian distance
between the two injections as a function of the average of the

injections. These values were visualized in a heat map, enabling
rapid inspection of duplicates with high variance, which likely
indicated a technical issue between injections (e.g., sprayer
dropout, or failure to inject the correct volume). Data were
corrected by applying the following universal rule (Rule 1) for
samples with >2-fold between-injection difference in average
intensity of all proteins: “report injection one intensity values for
all proteins, unless a specific protein was only quantified in
injection two, then include this value for increasing coverage”.
Injection 1 was selected for consistency as it is not possible to
distinguish which run more accurately represents the true
abundance.
While the above method was useful in identifying whole

samples with poor repeatability between injections, there were
cases where the concentrations of individual proteins were highly
variable. To assess these cases, a log was created using a custom
script, which highlighted those proteins where the ratio between
injections was >1.5. Proteins with high frequency of poor mea-
surement stability across all samples were processed according
to Rule 2: “if the variation between injections is greater than
1.5-fold, take the quantity measured using injection one”. The
fraction of samples where the ratio between runs had to be >1.5
was 0.5 to apply rule 2. This rule was only applied to 11 proteins
in the extended proteome and to 0 proteins in the core proteome.
This consistent approach to dealing with large variation in
between-run protein measurements was useful in reducing tech-
nical variation in the data set, while minimizing reductions in
proteome coverage. However, we recognize that there remains
increased uncertainty in the measurement of proteins treated in
this way, and the issue may be minimized in future studies by
increased replicate measurements. Mean values were derived
from replicate sample injections except for those cases where rule
1 and rule 2 were applied, and those cases where the protein was
quantified in only one sample.

Data Retrieval and Conversion

Data from previous studies of relevant tissues were retrieved
from the following sources: the Protein Atlas (www.proteinatlas.
org),45 the HUPO46,47 plasma reference set, the reference plasma
data set from the laboratory of Matthias Mann,48 sputum pro-
teomes,2,21,24 proteomes of BAL fluid,36,37,49−52 exhaled breath
condensate,53,54 pure airway mucus,55 saliva,56−61 macrophage
proteomes,62,63 eosinophil proteomes,64−68 whole neutro-
phils,69−72 investigations of neutrophil extracellular traps,16,73,74

neutrophil microparticles,75 and neutrophil granules.76,77 Data
were tabulated and identifiers converted to Uniprot format
using the Uniprot IDmapping service (http://www.uniprot.org/
mapping/) or via DAVID.78,79 Redundant, discontinued, merged
and incomplete entries (e.g., assignments to protein fragments,
pseudogenes, or to nonhuman proteomes) were either disregarded
or were assigned to Uniprot identifiers.

Statistical Analyses and Informatics

Statistical analyses were performed in R,80 InfernoRDN,44Microsoft
Excel and Minitab,13 using parametric or nonparametric tests as
appropriate. Coefficient of variation was calculated for log-
normal distributions. Visualization was performed in Origin 9.1
(http://www.originlab.com/91), R, and Inforsense (IDBS).
Venn diagrams were generated using Venny (http://bioinfogp.
cnb.csic.es/tools/venny/).81 Tree maps were drawn using
Treemap 4.1.2 (http://www.cs.umd.edu/hcil/treemap/).82 Path-
way analysis, functional enrichment analysis and biological
inference were performed using Ingenuity Pathway Analysis
software (IPA, QIAGENRedwood City). The IPA analyses were
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performed against a background gene set restricted to Ingenuity
Knowledge Base genes from expected sources of sputum pro-
teins, tissues and cell types of the lung or near the lung in Homo
sapiens. Functional enrichment was calculated via FunRich,83 and
the Secreted Protein Database84 was used to identify secreted
proteins. Protein−protein interactions were explored using
String (http://string-db.org/).85 Ontology was annotated from
retrieval via Uniprot,86 and retrieval and enrichment analysis was
performed via GOrilla (http://cbl-gorilla.cs.technion.ac.il/)87

against theHomo sapiens proteome and REVIGO (http://revigo.
irb.hr/).88 The data were clustered by topological data analysis
(TDA).89−93 TDA provides geometric representation of the
relationships between patient data and variables in high-
dimensional data sets. TDA structures were generated using
the Ayasdi Cure application (Ayasdi, Menlo Park, CA) with a
norm correlation metric and two MDS lenses (resolution,
20 bins; gain, ×5.0; equalized).
Power calculations were performed using R-package size,80

assuming two equally sized groups, to achieve 80% power to
detect a given fold change (FC), at the FDR-adjusted 5%
significance threshold, using a two-sided, two-sample t test,
assuming that the percentage of true null hypotheses, “p0”, is 95%
and 97.5% respectively. Equal variances were assumed for cases
and controls. The open source software, variancePartition, was
used to identify the drivers of protein measurement varia-
tion.94−96

■ RESULTS

Identified Proteins

A total of 4182 proteins were identified in the sputum in ≥1
individual(s): 2354 proteins in ≥2 individual(s), 284 proteins in
≥40% and 73 in≥90% of individuals (Supplementary Figure S1).
High abundance proteins were generally more frequently
identified (Figure 1), but many high abundance proteins were
also identified at lower frequency. These abundant proteins
would be expected to be observed across multiple time points in
the same patient, although there may be a proportion that are not
replicated because of biological variation or where they are near
the limits of detection. With consideration for these effects, we
have defined the sputum proteome in two ways, the “core” and
“extended” sputum proteome (Supplementary Excel File S1).
The 284 proteins identified in≥40% of participants were defined
as the “core sputum proteome” and were used in the statistical
analysis. The “core” proteome represents the most commonly
detected proteins within the sputum samples. The cutoff was
defined at ≥40%, since at this frequency of identification, the
frequency vs protein rank curve was close to the point of
inflection (Figure 1), where even a slight increase in the fre-
quency of identification “cut off”, significantly increased the
sparsity of the data set and, hence, the total number of missing
values. We also defined an “extended healthy sputum proteome”
data set consisting of 1666 proteins identified in ≥3 individuals.
Impact of Gender, Age, Atopy and Granulocyte Counts

No significant differences in proteomes were observed when
comparing age, atopic and nonatopic individuals or males and
females (Figure S2). Furthermore, using an FDR-adjusted t test,
only CLIP-associating protein 1, CLASP1_HUMAN, was found
to be significantly different (q = 0.04) between males and
females. No proteins were significantly different between atopic
and nonatopic individuals (q < 0.05). The network shown in
Figure S2 is constructed using multidimensional scaling (MDS)
lenses (similarity metric) projected onto a TDA network,

representing the structure of the proteomic data. This is an
advanced technique for clustering data according to similarity
and was used to explore the shape of the data for impacts of
potential covariates. There was a large range of sputum neutro-
phil counts, and a small number of individuals had counts (>80%)
that would be classified as neutrophilia. Compared to the other
participants, these individuals had elevated levels of Neutrophil
Defensin (Mann−Whitney; q = 0.02) and borderline results (q =
0.06) for neutrophil-associated proteins: leukocyte elastase inhib-
itor (Serpin B1), MMP9, and S100A8/9, and RHO protein GDP
dissociation inhibitor. There was also a weak, but statistically signif-
icant, positive correlation between some of the major granule
proteins and neutrophil counts as a % of total inflammatory cells
(4 of the top 5 proteins with greatest R2 correlation scores are
shown in Figure 2). The average R2 for correlation of proteins
with neutrophil count was 0.07 and 91%of proteins had anR2 < 0.2.
Protein Variability, Intensity Adjustment and Measurement
Accuracy

Protein measurements between samples were visualized in heat-
maps before and after intensity adjustment and after batch effect
correction (Figure S3), allowing rapid assessment of fluctuations
in instrument performance and systematic variation, e.g., sen-
sitivity and column changes over time and between analytical
batches. Effects that can be easily visualized in nonadjusted maps

Figure 1.Defining the “core” sputum proteome from the relationship of
abundance of identified proteins and frequency of identification across
samples. (A) The 40% frequency of detection used as the cutoff for the
“core” sputum proteome. The relationship between rank of frequency of
detection and the number of proteins identified (healthy sputum protein
rank) is approximately linear between 100% and 40%. This is similar to
the relationship between protein abundance and rank of frequency of
detection. Red lines indicate 40% cut off points for the 284 protein “core
sputum proteome” and also illustrate that this level is close to the point
of inflection of the curve. The “core sputum proteome” is shaded pink.
At this point, increasing the coverage cut off point for analysis
significantly increases the sparsity of the data set and hence the total
number of missing values. (B) The intensity of protein measurement
correlated weakly with the frequency of protein identification.
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(Figure S3A) were corrected by normalizing the intensity of
proteins in each sample to the sum of the measured top3
intensity of the proteins for that sample, up to the level of 10%
missing data across all samples; a method which we termed the
“top90” method (Figure S3B). The top90 adjustment corrected
for protein intensity variation more effectively than normal-
ization to “total intensity”; avoiding effects of rarely measured
protein abundances. ComBat was used to adjust for batch to
batch variation (Figure S3C).
High sample to sample variability was observed in the sputum

proteomes. Pooled sputum sample replicates, which were pro-
cessed and analyzed at regular intervals throughout the acquisi-
tion of healthy sputum data, were compared to the participant
sputum samples and thematched healthy serum data set (Figure 4).
Compared to individual sputum samples, pooled samples contained
higher numbers of proteins with a lower percentage Coefficient
of Variation (CV %). In all data sets, the variability in protein
measurements increased as the protein frequency of identi-
fication decreased. While the level of variability in sputum pools
was low, it was even lower in matched serum samples, thus
further indicating that the source of variability arises from the
sample type rather than the instrumentation.
We can describe the variability in the sputum as emerging from

heterogeneity in the population, assessed by comparing pool
variance to population variance, and technical variability; sample
processing and measurement in the mass spectrometer. Such
technical variability can be assessed through analysis of pooled
reference samples and replicate injections, respectively. Further-
more, we used the open source software, variancePartition, to
identify the drivers of protein measurement variation. Hetero-
geneity in the population drives most variance in the measure-
ment of the top 20 proteins with highest coverage across samples,
except for IGHA1_human, Immunoglobulin heavy constant
alpha 1, whose variance was most attributable to mass spec-
trometry running batch. Immunoglobulins are highly conserved
proteins, difficult to distinguish; minor changes in the running
conditions within the mass spectrometer may result in different
identity assignment. Across the top 40 proteins with highest
coverage across samples, 75% of variability could be attributed to
heterogeneity in the population (Figure 3B).

Proteins with high interindividual population variance are
shown in Supplementary Table S1, which illustrates those
proteins that had a high CV% in the healthy population but were
relatively stable in the pooled samples and injection replicates.
Many of the proteins with individual to individual variation are
known to have roles in inflammation (S100A proteins,97

A1AT98), or are likely the result of salivary contamination of
samples (e.g., Amylase99−123).
One of the features used for assessing measurement error was

injection repeatability. We defined a poor injection repeat as any
protein in a given sample with >1.5-fold difference in mea-
surement between injections. Such variation occurred in ∼6% of
all quantified sputum proteins, and ∼5% of all quantified serum
proteins. Variability occurred less frequently in the “core
proteome region” of serum where there was only 1.2% variation
across duplicate injections. However, in sputum this value
increased to 8.1% (1632 of 20 412 individual quantifications) of
the identified proteins (∼6% in pools). It should be noted that
the majority of these poor replicators in sputum occurred where
there was a lower frequency of identification (higher rank in
Supplementary Tables S2 and S3).
Proteins that showed variability due to sample handling were

identified by their high measurement stability in replicate injections
but high variability across the pools (Supplementary Table S2).
We observed a number of proteins with poor repeatability of
quantification.
Some proteins are difficult to measure with good repeatability

by mass spectrometry. These poor MS quantifiers showed high
CV % in pooled samples and poor replication of quantification
across injections. This variability in measurement is likely due to
the behavior of their peptides in HDMSE or errors in database

Figure 2. Neutrophil proteins and neutrophil counts. We observed
relationships between neutrophil granule proteins and the proportion of
neutrophils in sputum. Neutrophil proteins correlated with percentage
sputum neutrophil cell counts.

Figure 3. Sources of variability in protein measurement estimated by
variancePartition. (A) The fraction of total variation in measurement of
the top 20 proteins by highest coverage in samples, attributable to
individual, extraction batch, eosinophil cell count, age, neutrophil cell
count, total measured serum IgE, mass spectrometry running batch, sex
and residuals. (B) Proteome-wide violin plot of the distribution of
variance explained by each variable across the top 40 proteins by highest
coverage in samples.
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searching and quantification (e.g., due to homologues or protein
to protein ambiguity) (Supplementary Table S3).

The variability in quantitation was nonuniform throughout the
data set; i.e., it varied on a protein to protein basis. This obser-
vation in the samples from healthy participants, which would be
used as a control group for comparison with samples from par-
ticipants with disease, has far reaching implications. This is par-
ticularly so in terms of experimental design and statistical power
for biomarker discovery using unbiased sampling techniques.
In order to explore this phenomenon further, we performed a
literature search and generated a database of potential respiratory
biomarkers (Supplementary Excel File S2). The database was
used to identify highly cited respiratory proteins associated with
disease, and then, in a posthoc manner and using the data on
variability gathered from our experiments, we performed an in
silico exploratory evaluation of sample size requirements for
MS-based biomarker studies for these biomarkers.
Biomarker proteins identified in more than three published

studies and also identified in our study were chosen for more
detailed analysis. A subset of these proteins are presented
in Figure 5. Low variability in the pooled samples, but high

variability in the population, indicated that themajority of variability
arose from interindividual variation, while diverse measurements in
both the pools and the population indicated that there was a likely
influence of experimental variation to consider for that protein.

Figure 4. Variability in protein abundance measurements across
samples. Frequency histograms represent: on the x axis CV % in
increments of bin size 20, and inset scatter plots show CV % vs protein
rank (proteins were ranked by order of abundance and frequency of
identification across samples). Heatmap (B) illustrates Healthy sputum
is highly variable from participant to participant compared to pools.
Plots (A) and (C) show variability in protein abundance across healthy
sputum samples and pooled samples, respectively, with the pools
showing least variability across the different samples. Inset graphs
illustrate the variability increase as coverage and abundance decreases.
The variability seen in sputum is likely due to sample heterogeneity, and
this is contrasted to serum sample measurements in plots (D), which
illustrate the relative homogeneity of that fluid across study participants.

Figure 5. Distribution and variation in measurement of potential
inflammatory biomarkers in the healthy population compared to pooled
controls. Proteins showed varying levels of spread indicating that the
sample size required for statistical power will vary significantly per
analyte, with the top graph showing those proteins with lower variability
and the bottom, those with higher variability. Note that the pooled
samples were taken from asthmatics and nonasthmatics, and as such the
means of a number of these proteins will be higher or lower in the pools
depending on each protein’s role in inflammatory disease. Therefore,
pool samples can be used to contrast not only the measurement error
but also any potential subclinical inflammatory effects in healthy
participants.
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Twenty-four of the proteins in the biomarker database were
observed in≥20 healthy participants in our study, which allowed
a series of sample size calculations to be performed. The calcu-
lations quantified the relationship between variability of the sam-
ples, given by the standard deviation of the measurements, and
the sample size required to achieve 80% power (Table 2 and

Supplementary Figure S4). The sample size required for the
given statistical power varied between proteins because of a
combination of experimental and biological variation. This
highlights that while statistical differences for some biomarkers
can be reliably identified from sample sizes that are routinely
used in proteomic analysis, others require very large sample sizes
in order to confidently identify an effect. It is noted that in studies
where patient allocation is unbalanced (e.g., 1:2 or 1:3 cases to
controls), the total necessary sample size required is greater.
A 1:1 allocation provides the most efficient design.
Salivary Contamination

We compared the abundance of proteins reported to be salivary
proteins against the squamous cell counts from the study par-
ticipants (Supplementary Figure S5). Although salivary proteins
tended to be high when the percentages of squamous cell counts
were high, this was not consistent, and many participants had low
squamous counts but high levels of salivary proteins.
Tissue and Cell Origins of the Sputum Proteome

Proteins found in this study have been previously observed in
studies of human sputum proteomes. Comparison with studies of
induced sputum by Gharib et al.,24 Nicholas et al.,2 and Titz
et al.21 (Figure 6A,B) showed an extensive overlap of measured
proteins. Here, in the extended proteome, we found 63% of the
232 proteins identified by Gharib et al.,24 81% of the 171 the
proteins identified by Nicholas et al.,2 but only 31% of the 2178

proteins found in the study by Titz et al.,21 reflecting the
heterogeneity in sputum proteomes. Overlap of proteins found
between two studies particularly with different methodologies
increases confidence of the presence of this protein in sputum.
Overlap of proteins between more than two studies further sup-
ports the identifications. The extended proteome in the current
study showed the highest number of proteins shared with other
studies, representing an improvement in protein identification,
but also added confidence to the proteins identified in few
samples by HDMSE.
The overlap of proteins found between the extended sputum

proteome and other tissues and cells indicates potential origins of
proteins identified in this study of the sputum proteome. Sputum
is a complex biofluid, consisting of proteins of multiple origins
and can therefore reflect a complex biological picture. Despite
sampling different airway compartments, similar patterns of

Table 2. Sample Size Per Group, To Detect 1.5- or 2-Fold
Differences with 80% Power

1.5-fold change 2-fold change

protein SD (log2(x)) P0 95% P0 97.5% P0 95% P0 97.5%

PIGR 0.264 9 10 5 6
BPIB1 0.303 11 12 6 6
A1AT 0.349 14 15 7 7
LYSC 0.352 14 15 7 7
ACTB 0.379 16 17 7 8
TRFL 0.478 23 26 10 11
S10A8 0.525 27 30 11 13
S10A9 0.609 36 40 14 16
CO3 0.631 38 43 15 17
SBP1 0.711 48 53 18 20
VTDB 0.714 48 53 18 20
CFAH 0.743 52 58 20 22
ANXA2 0.776 56 63 21 24
PRDX1 0.804 60 67 23 25
UTER 0.825 63 70 24 26
PEDF 0.879 72 80 26 29
B2MG 0.882 72 80 27 30
FABP5 0.956 84 94 31 34
PERM 1.166 124 137 44 49
DEF1 1.168 124 138 44 49
MMP9 1.201 131 146 47 52
NGAL 1.307 155 172 55 61
APOA1 1.588 227 252 80 88
HBB 1.609 233 259 82 91

Figure 6. Comparison of coverage of U-BIOPRED sputum with other
studies. Including other sputum studies (A,B), other proteomic studies
of airway fluids and secretions (C), and respiratory tissues found in the
protein atlas normal expression database (D). U-BIOPRED (Healthy)
sputum proteome was compared to known proteomes of granulocytes
and macrophages (E), and to the proteomes of neutrophil granules (F).
Comparisons were also made with Saliva and Blood (G).
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proteome coverage were also observed when comparing airway
mucus,55 exhaled breath condensate (EBC)53,54 and studies
analyzing bronchial alveolar lavage (BAL)36,37,49−52 (Figure 6C).
However, the number of proteins identified here were only of
similar magnitude to those in the BAL study. This may be
partially due to improvements in sensitivity of protein measure-
ment. Approximately 20% of proteins identified in the BAL study
were also identified in the current study, which likely reflects
an overlap in the high confidence detection of high abundance
proteins, and a variability between studies in sampling of less
abundant proteins. Results also showed extensive overlap with
proteins identified from respiratory tissue analyses in the Protein
Atlas45 (Figure 6D). There was also overlap in the identifica-
tions of measured proteins to those of proteomes measured for
eosinophils, macrophages and granulocyte (Figure 6E) and neu-
trophil granules (Figure 6F). Identification of proteins from all
major tissues and cell types of the airways highlights not only the
complexity of sputum as a clinical fluid, but also its utility for
accessing lung biology. Such results were also reflected in our
core sputum proteome, where extensive overlap was observed
across a variety of tissues and/or biofluids (Supplementary
Figure S6). The interpretation of these results is limited due to
the differences in the sensitivity and variability of the protein
measurement techniques. Inmost cases, the proteins identified in
the studies are not tissue or cell specific, for example, the pro-
teome of the compared macrophage data set covers half of the
genome, which suggests that most of these proteins are not
macrophage specific. With increasing sensitivity in protein mea-
surement techniques, there is a corresponding increase in the
proportion of low abundance proteins; therefore, overlap of pro-
teins detected in studies reporting fewer proteins may be more
useful in finding the biological origins of the proteins. In studies
where fewer proteins are reported, these likely reflect high
abundance, easy to detect proteins and do not include low abun-
dance proteins that are harder to detect.
To further understand the protein composition of sputum, we

also investigated possible systemic or nonrespiratory origins of
our identified proteins through comparison to other relevant bio-
fluids. We identified ∼50% overlap with proteomes of sputum,
the upper airway, saliva and blood, similar to that reported
previously2,61 (Figure 6G).
Functional Analysis

Subcellular localization of proteins was analyzed using Ingenuity
Pathways Analysis (IPA) (Figure 7). 27% of the proteins in the

core sputum proteome were predicted to be extracellular or
secreted, with a further 8% predicted to be integral membrane or
cell surface proteins. 50% of identities were predicted to be
cytoplasmic proteins.

The LXR/RXR pathway refers to liver X receptor (LXR),
which is activated by oxysterol ligands to bind retinoid X recep-
tors (RXRs). Resultant LXR−RXRheterodimers bindLXR response
elements and regulate expression of genes involved in inflammation,
metabolism and cholesterol metabolism. The FXR/RXR path-
way refers to the bile-acid concentration-mediated farnesoid
X receptor (FXR) and RXR regulation of lipid metabolism.
Integrin linked kinase (ILK) signaling refers to the ILK-mediated
control of cytoskeleton remodelling. eNOS Signaling refers to
the mechanism of nitric oxide (NO) production by the endo-
thelial NO Synthase (eNOS).
Enrichment and pathway analyses for the core sputum pro-

teome and extended sputum proteome were performed using
Funrich, Go-Rilla and IPA. As gene ontology mapping presents a
high-level of redundant terms, we utilized REVIGO to collapse
and summarize like terms as treemaps. The results of these GO
enrichment analyses for the core sputum proteome are shown in
Supplementary Figure S7, A for cellular components, B for
molecular function, and C for biological processes. Analyses of
the extended sputum proteome were also performed and shown
in Figure S7D,E. The size of each individual square represented
in each treemap is proportional to the −log10 p value for the
enrichment of that category, measured by Fisher’s exact test. The
ontologies are grouped by related terms and defined by color,
providing a landscape overview of induced sputum. Enrichment
was observed for vesicle related components; GORilla q = 1.92 ×
10−7, with 111 proteins identified with the GO term “vesicle”;
however, proteins have multiple GO terms and these results only
suggest an enrichment of proteins originating from vesicles.
Many granulocyte functions involve vesicle formation, such as
the release of extracellular vesicles, some with antibacterial effect,
released during spontaneous death of neutrophils.131 Enrichment
was also observed for extracellular proteins, (immune) receptor
and antigen binding functions and dominated by processes
involved in homeostasis, and mucosal and innate immunity.
Further analysis of enriched biological pathways showed that the
top IPA canonical pathways are thematically similar (Table 3),
with cell migration and tissue organization (integrin linked
kinase signaling, actin cytoskeleton signaling, leukocyte extrav-
asation signaling), innate immunity (acute phase response, com-
plement) and regulation of cytoskeleton, extracellular matrix (ECM)
remodelling and inflammation (e.g., FXR/RXR (farnesoid
X receptor/retinoid X receptor) or LXR (liver X receptor)/
RXR; RhoA, Ras homologue A; RhoGDI, Rho GDP-dissociation
inhibitor) being the most enriched pathways, and, to a lesser
extent, those involved in energy metabolism (e.g., glycolysis).
Similar trends were observed when exploring the association of
proteins with specific functions and diseases, with inflammatory
responses and immune cell migration dominating the functional
enrichment categories (Table 4). These enriched pathways and
functions were also conserved in the extended sputum proteome
data set (Supplementary Tables S4 and S5).
Investigating protein interaction networks (http://string-db.

org) in our core sputum proteome data set (Supplementary
Figure S8), we observed a number of small groups of interacting
protein partners and significantly one large interaction network,
highlighting the large number of functional relationships that are
experimentally accessible in the core sputum proteome.

■ DISCUSSION
This study provides the first large-scale analysis of sputum using
MSE, a data-independent proteomics approach. To our knowl-
edge, it provides the most comprehensive description to date of

Figure 7. Subcellular localization prediction results from IPA analyses of
the proteins from the core and extended sputum proteome against a
background gene set restricted to Ingenuity Knowledge Base genes from
expected sources of sputum proteins.
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airway lining fluid proteins and, thus, significantly advances on
the sputum proteome we have previously reported.2 The study
has identified 284 proteins in the core healthy sputum proteome
that are reliably and repeatedly measured and 1666 proteins in
the extended proteome, additionally detailing less repeatedly
measured proteins that are usually also less abundant. We have
assessed the biological relevance of the proteome, particularly in
the context of enrichment against the wider human proteome
and have highlighted that secreted proteins and vesicular
components are highly enriched in this biofluid.
Proteomic studies of sputum to date have been small but,

nevertheless, useful. Our previous study2 identified 191 proteins
in the sputum of a single individual using 2-dimensional gel
electrophoresis and mass spectrometry, which is biased toward
high abundance proteins and not amenable to high throughput
analysis. Comparison of our results with sputum studies by other
authors shows excellent overlap in detected proteins, but also a
number of proteins unique to each study. Gharib et al., applied
shotgun mass spectrometry to assess 5 healthy and 10 asthmatic
participants,24,25 and identified 254 proteins in all participants’
sputum. Using a nonparametric test developed by the authors,
called the spectral index,26 they found 17 proteins whose con-
centrations were significantly different between asthma and
health, including serpin peptidase inhibitor (SRPINA1) and secre-
toglobin (SCGB1A1, also known as Clara cell 10-kD protein)
that were increased and decreased in concentration, respectively
in asthma. Titz et al.,21 conducted an impressive study applying
LC−MS/MS of tryptic peptides labeled with TandemMass Tags
(TMT) to sputum samples of 216 participants equally composed
of healthy nonsmokers, healthy never smokers, COPD patients
and current smokers. Relative quantification was achieved by
sequentially measuring the proteome of demographically matched
samples (1 from each cohort per run) against a pooled reference
sample. They analyzed differential protein expression only in
proteins detected in at least 2/3 of samples per study group and
reported proteins differentially abundant between groups but did

not report the total proteomes. This approach pointed to 15
proteins differentially abundant when comparing patients with
COPD and current smokers and many more when compared
with nonsmokers.
Differences in reported proteins between studies can be

explained by differences between individual phenotypes; bio-
logical variability. Differences are also attributable to differences
in sample preparation and analysis methods. Likewise, where
there are similarities in techniques used, there are large overlaps
in proteins reported. Highlighting this paradigm, mucins 5A and
5C and the IgGFc-binding protein, which are all major com-
ponents of airway mucus,132−134 were not identified in our study,
likely due to postdigestion filtration of samples to remove large
indigestible substances, e.g., mucopolysaccharides, thereby remov-
ing these proteins from the analysis.

Protein Detection and Quality Control

The study design and attention to quality control has allowed us
to investigate numerous experimental and measurement effects
in our data set: technical reproducibility in measurement of each
protein, interindividual variability of each protein and identi-
fication of salivary contamination of sputum samples. The semi-
stochastic nature of peptide sampling in MS-based proteomic
approaches, even when using data independent methods, often
results in highly abundant proteins being measured more
reproducibly, with proteins of lower abundance being identified
less frequently, leading to increased sparsity within a data set.
This is most evident in larger studies, where the proportion of
proteins identified across all samples is lower than in smaller
studies. These effects were visible in both the serum and sputum
data sets in the current study, and as such, influenced our approach
to developing our “Top-90 intensity normalization” strategy. In a
data matrix ranked by protein intensity and frequency of iden-
tification, the low frequency region was seen to be more variable
between samples, both in the number of protein identities per
sample and their intensity measurement. Such variation can
influence normalization strategies based upon total MS intensity.
We have found that using the region with the greatest coverage
for adjusting samples, the top90 method, is an effective method
of normalization for protein load and intensity.
Comparison of variability across injection replicates and pooled

QC samples within the healthy sputum proteome data set allowed
the precision of measurement for specific proteins to be assessed.
Notably, measurements of some proteins were reproducible
across samples, whereas other proteins showed poor replicability
across sample replicates and pooled QC samples, indicating that
these proteins are intrinsically recalcitrant to precise measure-
ment by HDMSE. As expected, there was a trend for proteins
with lower intensity to show higher variability since they are gen-
erally represented by fewer peptides and are more prone to
interference due to noise. In this study we chose to define a core
proteome using proteins detected in ≥40% of samples repre-
senting proteins reproducibly measured. However, we recognize
that the proteome presented here will require verification in
future studies.
By systematically examining the variability in pools, samples

and replicate injections, we were able to identify potential
sources of variation as either: sample heterogeneity, sample pro-
cessing effects, and MS measurement or post processing effects.
Proteins that display high CV of measurement across pools, but
good replication between injections, are likely to be poor quan-
tifiers due to sample preparation and are likely to be unstable or
variably modified. The majority of these are at the lower end of

Table 3. Top 20 Enriched Canonical Pathways in the Core
Sputum Proteome Set

ingenuity canonical pathways
enrichment p

value
total number

matched proteins

LXR/RXR Activation 3.16 × 10−12 17
Glycolysis I 2.00 × 10−11 9
Acute Phase Response Signaling 6.31 × 10−11 17
FXR/RXR Activation 5.01 × 10−10 15
Gluconeogenesis I 7.76 × 10−10 8
Actin Cytoskeleton Signaling 2.69 × 10−07 15
ILK Signaling 2.00 × 10−06 13
Primary Immunodeficiency Signaling 3.89 × 10−06 7
Pyruvate Fermentation to Lactate 1.45 × 10−05 3
Complement System 1.70 × 10−05 6
RhoGDI Signaling 2.95 × 10−05 11
Hematopoiesis from Pluripotent Stem
Cells

3.16 × 10−05 6

Leukocyte Extravasation Signaling 3.89 × 10−05 12
RhoA Signaling 3.89 × 10−05 9
Clathrin-mediated Endocytosis
Signaling

5.50 × 10−05 11

Glucocorticoid Receptor Signaling 7.08 × 10−05 14
Cell Cycle: G2/M DNA Damage
Checkpoint Regulation

8.13 × 10−05 6

Epithelial Adherens Junction Signaling 1.69 × 10−04 9
Coagulation System 1.90 × 10−04 5
eNOS Signaling 1.99 × 10−04 9
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the coverage spectrum. Many of the variable proteins were also
identified as membrane or centriolar proteins, which often con-
tain hydrophobic protein regions that can affect protein digestion
or peptide extraction efficiencies, thereby influencing the MS
measurement. In a similar fashion, those proteins that were stable
in the pools, but were variable in injection replicates, are likely to
be poor MS quantifiers or liable to postprocessing errors. Many
of these have potential homologues which could interfere with
their in silico quantitation. The results of our QC analysis suggest
that variation of proteins in pooled QC samples and sample rep-
licate measurements need to be routinely assessed across sample
populations for individual proteins and for different biofluids.
This will be critical in developing targeted biomarker assays and
designing large discovery projects.
Protein Measurement and Concentration Variability and
Effect on Statistical Power

Determination of normal/healthy levels of proteins is essential
for the identification of potential disease biomarkers. It is,
therefore, crucial to understand both the technical and biological
variation affecting measurement of this baseline proteome. In the
current study, the measurements of a number of “core sputum
proteome” proteins were highly stable in repeat analyses of
pooled sputum samples, pointing to the robustness of the MS
analysis, but interindividual variability was significant (Supple-
mentary Table S1), in stark contrast to the low interindividual
variability in serum from the same individuals.
Upon the basis of respiratory protein biomarkers previously

identified from other studies and the variability of the proteins
observed in our healthy population study, we calculated the

sample size required to observe a specific effect against that
baseline in the context of a disease setting. By parallel reference to
our pooled sample measurements, we inferred how much of the
variance can be attributed to processing and/or technical mea-
surement and how much is a consequence of interindividual het-
erogeneity. The greater the variability in the measurement, the
greater the sample size required to achieve 80% power (Table 2).
For example, quantitation of modest (1.5-fold) differences for a
highly variable protein, such as hemoglobin B (HBB), requires
>500 patients. By contrast, differential expression of proteins
such as polymeric immunoglobulin receptor may be quantifiable
with as few as 20 patients. In the case of HBB, high sample-to-
sample variation was observed, although variation of HBB across
the pooled samples was low. As highlighted above, saliva is often
a contaminant in healthy individuals who have difficulty pro-
ducing an adequate sputum sample. Since saliva is susceptible to
contamination with blood as a result of gum disease,129,130 HBB
may be a consequence of oral-derived blood contaminating the
sputum. The other highly variable proteins, neutrophil gelatinase
associated lipocalin, MMP9, and neutrophil defensin are all
known to be involved in inflammation, and several of these seen
in the current study correlated with sputum neutrophil numbers.
Protein biomarkers have been reported in previous respiratory

studies, however, high variability in protein concentrations, in
combination with small sample size30 can result in false positive
biomarker identifications. Additionally, as we have shown, the
protein to protein differences in variability means that predicting
sample size to sufficiently power biomarker investigations is
difficult to achieve without extensive prior investigation.

Table 4. Top 20 Enriched Functions and Diseases Found by IPA of the Core Sputum Proteome

disease and function category hierarchy specific annotation
enrichment p

value
number of matched

proteins

Infectious Diseases, Inflammatory Disease, Respiratory Disease Severe acute respiratory
syndrome

1.92 × 10−09 14

Infectious Diseases Viral infection 4.17 × 10−09 18
Inflammatory Response Inflammatory response 4.40 × 10−08 18
Connective Tissue Disorders, Inflammatory Disease, Skeletal and Muscular Disorders Rheumatic Disease 9.30 × 10−08 19
Connective Tissue Disorders, Inflammatory Disease, Skeletal and Muscular Disorders Arthritis 1.30 × 10−07 18
Cellular Movement, Immune Cell Trafficking Leukocyte migration 2.22 × 10−07 20
Cellular Movement, Hematological System Development and Function, Immune Cell
Trafficking, Inflammatory Response

Cell movement of
phagocytes

2.87 × 10−07 16

Immunological Disease Systemic autoimmune
syndrome

3.05 × 10−07 16

Inflammatory Disease Chronic inflammatory
disorder

5.92 × 10−07 16

Cellular Movement, Hematological System Development and Function, Immune Cell
Trafficking

Cell movement of
leukocytes

6.79 × 10−07 19

Connective Tissue Disorders, Immunological Disease, Inflammatory Disease, Skeletal and
Muscular Disorders

Rheumatoid arthritis 1.02 × 10−06 15

Cellular Movement, Hematological System Development and Function, Immune Cell
Trafficking

Cell movement of myeloid
cells

1.73 × 10−06 15

Cell-to-Cell Signaling and Interaction, Hematological System Development and Function,
Immune Cell Trafficking

Adhesion of immune cells 3.58 × 10−06 13

Cellular Movement, Hematological System Development and Function, Immune Cell
Trafficking, Inflammatory Response

Chemotaxis of phagocytes 5.26 × 10−06 12

Cellular Movement, Hematological System Development and Function, Immune Cell
Trafficking, Inflammatory Response

Chemotaxis of leukocytes 6.22 × 10−06 14

Cellular Movement, Hematological System Development and Function, Immune Cell
Trafficking, Inflammatory Response

Chemotaxis of myeloid cells 8.82 × 10−06 12

Cellular Movement, Hematological System Development and Function, Immune Cell
Trafficking

Cell movement of
granulocytes

1.06 × 10−05 11

Cellular Assembly and Organization Formation of rosettes 1.45 × 10−05 3
Organismal Survival Organismal death 1.86 × 10−05 7
Cellular Movement, Hematological System Development and Function, Immune Cell
Trafficking, Inflammatory Response

Cell movement of
neutrophils

2.08 × 10−05 9
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These problems are likely strong contributors to the poor record
of translating many biomarkers to the clinic.27,28

Confounding Factors in Sputum Analysis

Previous studies have shown intermediate levels of inflammation
and even tissue remodelling in healthy atopic individuals relative
to those with a clear diagnosis of asthma (Djukanovic ERJ).
However, in the current study, there were no significant differ-
ences between atopic and nonatopic participants, possibly because
their allergic status was too mild or the allergic processes in the
airways were not active at the time of sampling.
A small number of individuals displayed neutrophilia (>80%

neutrophils) which was reflected by observed differences in neu-
trophil proteins measured in these study participants. Neu-
trophilic inflammation is often a hallmark of infection, disease
exacerbations, or severity of chronic airway diseases like asthma
and COPD,124,125 but is often confounded by smoking status and
steroid treatment, influencing neutrophil half-life, activity and
migration.126−128 A number of neutrophil proteins correlated
with neutrophil cell counts (Figure 2); neutrophil defensin,
S100A8, S100A9 and MMP9. Concentrations of the major neu-
trophil granule protein, myeloperoxidase only weakly correlated
with sputum % neutrophil cell counts. Although neutrophil cell
counts correlate specifically with these neutrophil derived pro-
teins, we do not observe a large effect across the rest of the core or
extended proteome as shown in Figure 3. As such, these proteins
are useful biomarkers of neutrophilia while not compromising
the potential identification of other disease signatures.
Salivary contamination is an inevitable confounding factor in

sputum analyses, particularly in healthy individuals and other
participants where sputum induction is less successful. We com-
pared squamous cell counts with the expression of proteins found
in saliva in previous studies and found mixed correlations. Squa-
mous cell count does not perfectly reflect salivary contamination
of sputum samples, however, the salivary proteins studied in
these comparisons may additionally originate from other tissues,
not just saliva. Further investigation is required to determine
better markers of salivary contamination in sputum.

Origins and Biological Context of the Sputum Proteome

We investigated the predicted subcellular localization of the pro-
teins from the core and extended sputum proteomes (Figure 7
and S7). A large portion of the proteins measured in the sputum
proteome were reported to be cytoplasmic by GOrilla analysis.
Since our analysis is of the supernatant from induced sputum,
where cells and cell debris are removed prior to analysis, this was
expected. In addition, the supernatant would also include gran-
ulocytes, which contain granules of cytoplasmic proteins for
release into the sputum.
When comparing the sputum proteome in the current study

with those from studies of airway tissue and fluid samples,
significant numbers of identified proteins were seen to overlap.
The number of proteins for which a potential cell or tissue origin
could not be assigned was low. Significant numbers of the iden-
tified proteins likely have origins in other tissues of the body: for
example, acute phase proteins are produced largely in the liver
and enter the lungs via capillaries together with other plasma
proteins. Functional analysis of the healthy sputum proteome
identified proteins associated with innate immune defense,
inflammatory responses via complement and acute phase pro-
teins, phagocytic cells (macrophages and neutrophils) and, to a
lesser extent, eosinophils.
A number of signaling pathways were enriched in sputum,

including LXR, a member of the nuclear receptor family of

transcription factors that are closely related to nuclear receptors,
such as the peroxisome proliferator-activated receptors (PPARs),
FXR, also known as bile acid receptor, RXR, that is activated by
retinoic acid. FXR/RXR are known to be important in macro-
phage lipid metabolism and inflammation.133,135,136 Such regu-
latory pathways have complex roles in inflammatory biology:
FXR inhibits inflammation,137 while LXR agonists have been
shown to increase airway reactivity and smooth muscle growth
in an asthma model.138 LXR has also been implicated in
counter-regulation of toll like receptor induced inflammatory
responses,139,140−142 which are involved in inflammatory respi-
ratory diseases.146,147 We also observed an enrichment of the
RhoA and RhoGDI signaling pathways, known to be involved in
hyper-responsiveness in asthma,143,144 and superoxide gener-
ation in macrophages,145 respectively.
An interesting observation was the significant enrichment of

vesicles and vesicular components in the sputum (Figure S7).
These small membraned particles, either described as exosomes
(nanovesicles) or ectosomes (microparticles), are released by mul-
tiple cell types, including immune cells, and have been reported
in sputum and lung secretions.146 Secretory vesicles have recently
become an area of interest for their potential pro and anti-
inflammatory functions.146 In response to nonspecific comple-
ment mediated inflammation neutrophils produce ectosomes
that are coated in and loaded with proteins often associated with
granules.148 In addition to neutrophil derived vesicles, antigen-
loaded exosomes from mast cells, dendritic cells, epithelial cells
and T lymphocytes have been highlighted as being potentially
important for allergy,149 and eosinophils produce cytokine con-
taining vesicles, e.g., degranulation, that may also be important
for asthma (reviewed in Spencer et al.150).
Secretory vesicles contain high levels of cytoplasmic pro-

teins.77 For example, exosomes isolated in the BAL of asthmatics
are enriched for inflammatory leukotriene production149 and
may help explain the large numbers of cytosolic proteins we have
identified in sputum. In addition to the protein loading capacity
of these vesicles, functions involving the transport of nucleic acids
have also been identified. For example, microRNA-loaded vesicles
have been highlighted as potentially important in asthma and inflam-
matory lung disease signaling,151 andhave been shown to be different
between BAL samples of healthy and asthmatic individuals.152

■ CONCLUSIONS

The mapping of the healthy human sputum proteome in the cur-
rent study has considered experimental and technical variability,
population variance driven by daily exposure of the lung to the
external environment, and sample complexity due tomultiple poten-
tial protein origins, effects of cellular composition and potential
for contribution of vesicular components. Functionally, homeo-
stasis and defense mechanisms dominate the measured sputum
proteome. The specific experimental and technical variability of
the applied methodology must not be underestimated, and there
are implications forminimum sample sizes required for determining
differential abundance between groups with statistical power.
The comprehensive approach we have used for this analysis of the
healthy sputum proteome provides a good comparator data set for
proteomes from patients suffering from inflammatory lung disease.
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Manchester, UK; M. Klüglich, Boehringer Ingelheim Pharma
GmbH & Co. KG; R. Knowles, Arachos Pharma, Stevenge, UK;
J.R. Konradsen, Karolinska University Hospital and Karolinska
Institutet; K. Kretsos, UCB, Slough, UK; L. Krueger, University
Children’s Hospital Bern, Switzerland; A.-S. Lantz, Karolinska
University Hospital and Karolinska Institutet; C. Larminie, GSK,
London, UK; P. Latzin, University Children’s Hospital Bern,
3010 Bern, Switzerland; D. Lefaudeux, European Institute for
Systems Biology and Medicine, University of Lyon, France;
N. Lemonnier, European Institute for Systems Biology and
Medicine, University of Lyon, France; L.A. Lowe, Centre for
Respiratory Medicine and Allergy, Institute of Inflammation and
Repair, University Hospital of South Manchester, NHS
Foundation Trust, Manchester, UK; R. Lutter, Academic
Medical Centre, University of Amsterdam; A. Manta, Roche
Diagnostics GmbH, Mannheim, Germany; A. Mazein, European
Institute for Systems Biology and Medicine, University of Lyon,
France; L. McEvoy, University Hospital, Department of
Pulmonary Medicine, Bern, Switzerland; A. Menzies-Gow,
Royal Brompton and Harefield NHS Foundation Trust;
N. Mores, Universita ̀ Cattolica del Sacro Cuore; C.S. Murray,
Centre for Respiratory Medicine and Allergy, The University of
Manchester, Manchester Academic Health Science Centre,
University Hospital of South Manchester NHS Foundation
Trust, Manchester, UK; K. Nething, Boehringer Ingelheim
Pharma GmbH & Co. KG; U. Nihleń, Department of
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Allergy Research, Karolinska Institutet, Stockholm, Sweden;
Sandy Pink, NIHR Southampton Respiratory Biomedical
Research Unit, Southampton, UK; Anthony Postle, University
of Southampton, UK; Pippa Powell, European Lung Foundation,
Sheffield, UK;Malayka Rahman-Amin, previously at AsthmaUK,
London, UK; Navin Rao, Janssen R&D, USA; Lara Ravanetti,
Academic Medical Centre, University of Amsterdam, Amster-
dam, The Netherlands; Emma Ray, NIHR Southampton
Respiratory Biomedical Research Unit, Southampton, UK;
Stacey Reinke, Centre for Allergy Research, Karolinska Institutet,
Stockholm, Sweden; Leanne Reynolds, previously at Asthma
UK, London, UK; John Riley, Respiratory Therapeutic Unit,
GSK, London, UK; Martine Robberechts, MSD, Brussels,
Belgium; Amanda Roberts, Asthma UK, London, UK; Kirsty
Russell, National Heart and Lung Institute, Imperial College,
London, UK; Michael Rutgers, Longfonds, Amersfoort, The
Netherlands; Marco Santoninco, University of Rome “Tor
Vergata”, Rome Italy; Corinna Schoelch, Boehringer Ingelheim
Pharma GmbH & Co. KG, Biberach, Germany; James P.R.
Schofield, Centre for Proteomic Research, Institute for Life
Sciences, University of Southampton, Southampton, UK;
Marcus Sjödin, Centre for Allergy Research, Karolinska
Institutet, Stockholm, Sweden; Paul J. Skipp, Centre for
Proteomic Research, Institute for Life Sciences, University of
Southampton, Southampton, UK; Barbara Smids, Academic
Medical Centre, University of Amsterdam, Amsterdam, The
Netherlands; Caroline Smith, NIHR Southampton Respiratory
Biomedical Research Unit, Southampton, UK; Jessica Smith,
Asthma UK, London, UK; Katherine M. Smith, University of
Nottingham, UK; Doroteya Staykova, University of South-
ampton, Southampton, UK; Kai Sun, Data Science Institute,
Imperial College, London, UK; John-Olof Thörngren, Kar-
olinska University Hospital, Stockholm, Sweden; Bob Thornton,
MSD, USA; Jonathan Thorsen, COPSAC, Copenhagen
Prospective Studies on Asthma in Childhood, Herlev and
Gentofte Hospital, University of Copenhagen, Copenhagen,
Denmark; Marianne van de Pol, Academic Medical Centre,
University of Amsterdam, Amsterdam, The Netherlands;
Marleen van Geest, AstraZeneca, Mölndal, Sweden; Jenny
Versnel, previously at Asthma UK, London, UK; Anton Vink,
Philips Research Laboratories, Eindhoven, The Netherlands;
Frans Wald, Boehringer Ingelheim Pharma GmbH & Co. KG,
Biberach, Germany; Samantha Walker, Asthma UK, London,
UK; Jonathan Ward, Histochemistry Research Unit, Faculty of
Medicine, University of Southampton, Southampton, UK; Zsoka
Weiszhart, Semmelweis University, Budapest, Hungary; Kris-
tiane Wetzel, Boehringer Ingelheim Pharma GmbH, Biberach,
Germany; Craig E. Wheelock, Centre for Allergy Research,
Karolinska Institutet, Stockholm, Sweden; Coen Wiegman,
National Heart and Lung Institute, Imperial College, London,
UK; Sian̂ Williams, International Primary Care Respiratory
Group, Aberdeen, Scotland; Susan J. Wilson, Histochemistry
Research Unit, Faculty of Medicine, University of Southampton,
Southampton, UK; Ashley Woodcock, Centre for Respiratory

Medicine and Allergy, Institute of Inflammation and Repair,
University of Manchester and University Hospital of South
Manchester, Manchester Academic Health Sciences Centre,
Manchester, UK; Xian Yang, Data Science Institute, Imperial
College, London, UK; Elizabeth Yeyasingham, UK Clinical
Operations, GSK, Stockley Park, UK. Partner organizations:
Novartis Pharma AG; University of Southampton, Southampton,
UK; Academic Medical Centre, University of Amsterdam,
Amsterdam, The Netherlands; Imperial College London,
London, UK; University of Catania, Catania, Italy; University
of Rome “Tor Vergata”, Rome, Italy; Hvidore Hospital, Hvidore,
Denmark; Jagiellonian Univ. Medi. College, Krakow, Poland;
University Hospital, Inselspital, Bern, Switzerland; Semmelweis
University, Budapest, Hungary; University of Manchester,
Manchester, UK; Universite ́ d’Aix-Marseille, Marseille, France;
Fraunhofer Institute, Hannover, Germany; University Hospital,
Umea, Sweden; Ghent University, Ghent, Belgium; Ctr. Nat.
Recherche Scientifique, Villejuif, France; Universita ̀Cattolica del
Sacro Cuore, Rome, Italy; University Hospital, Copenhagen,
Denmark; Karolinska Institutet, Stockholm, Sweden; Notting-
hamUniversity Hospital, Nottingham, UK; University of Bergen,
Bergen, Norway; Netherlands Asthma Foundation, Leusden,
NL; European Lung Foundation, Sheffield, UK; Asthma UK,
London, UK; European Fed. of Allergy and Airways Diseases
Patients’ Associations, Brussels, Belgium; Lega Italiano Anti
Fumo, Catania, Italy; International Primary Care Respiratory
Group, Aberdeen, Scotland; Philips Research Laboratories,
Eindhoven, NL; Synairgen Research Ltd., Southampton, UK;
Aerocrine AB, Stockholm, Sweden; BioSci Consulting, Maas-
mechelen, Belgium; Almirall; AstraZeneca; Boehringer Ingel-
heim; Chiesi; GlaxoSmithKline; Roche; UCB; Janssen Biologics
BV; Amgen NV; Merck Sharp & Dohme Corp. Third Parties to
the project, contributing to the clinical trial: Academic Medical
Centre (AMC), Amsterdam (In the U-BIOPRED consortium
the legal entity is AMC Medical Research BV (AMR); AMR is a
subsidiary of both AMC and the University of Amsterdam; AMC
contribute across the U-BIOPRED project); University Hospital
Southampton NHS Trust (third party of the University of
Southampton and contributor to the U-BIOPRED clinical trial);
South Manchester Healthcare Trust (third party to the
University of Manchester, South Manchester Healthcare Trust,
contributor to the U-BIOPRED clinical trial and to the
U-BIOPRED Biobank); Protisvalor Med́iterraneé SAS (third
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Supplementary Figure S2. Topological data analysis (TDA) network showing no clustering according 

to abundant proteins or clinical variables.  TDA was used to assess distribution of variables across 

participants’ samples. Participant samples could not be separated according to protein expression or 

clinical variables, these variables did not cluster within the population studied. 
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Supplementary Figure S3. Heatmaps of the U-BIOPRED sputum proteomics data.  X axes are ranked 

samples in the order in which they were run, and the Y axes are proteins with ≤20% missing values. 

A) raw top3 intensity data. B) ‘top90’ normalised data. C) data after batch effect correction using 

Combat. Systematic variability can be seen in the raw data which is largely corrected for by ‘top90’ 

correction. 
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Supplementary Figure S4. The sample size required per group relative to variability of the samples 

given by the standard deviation of the measurements. 

 

 

 

 

 

 

 

 

 

 

 

 



S-7 

 

0 20 40

10

12

14

C
a
rb

o
n
ic

 a
n
h
y
d
ra

s
e
 6

 (
lo

g
2
)

Squamous cell %

0 20 40

14

15

16

17

S
a
liv

a
ry

 A
m

y
la

s
e
 (
lo

g
2
)

Squamous cell %

0 20 40

10

12

14

P
a
rt
o
id

 s
e
cr

e
to

ry
 p

ro
te

in
 (
lo

g
2
)

Squamous cell %

0 20 40

10

12

14

B
P

IF
B

2
 (
lo

g
2
)

Squamous cell %

0 20 40

11

12

13

14

15

L
a
c
ri
m

a
l 
p
ro

lin
e
 r
ic

h
 p

ro
te

in
 (

lo
g
2
)

Squamous cell %

0 20 40

8

10

12

14

C
y
s
ta

ti
n
 S

A
 (
lo

g
2
)

Squamous cell %

0 20 40

6

8

10

12

14

P
u
lm

o
n
a
ry

 s
u
rf
a
c
ta

n
t 
p
ro

te
in

 A
2
 (
lo

g
2
)

Squamous cell %

0 20 40

10

11

12

13

P
u
lm

o
n
a
ry

 s
u
rf
a
c
ta

n
t 
p
ro

te
in

 B
 (

lo
g
2
)

Squamous cell %

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary figure S5.   Correlations between proteins and squamous cell counts. Moderate 

correlations are seen between proteins reported to be salivary proteins and squamous cell counts, 

and there is a moderately negative correlation between lung secretory proteins and squamous cells 

counts.  
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Supplementary figure S6.   Overlap of proteins in the U-BIOPRED core sputum proteome in 

comparison to other studies. 
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Supplementary figure S7 A). Treemap of healthy sputum proteome: cellular component. B) Treemap 

of healthy sputum proteome: Molecular function. C) Treemap of healthy sputum proteome: 

Biological process 
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Supplementary figure S8. Interaction network of the Healthy core sputum proteome. The network 

map was prepared using STRING (http://string.embl-heidelberg.de/). 
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Supplementary Table S1. Proteins with high population variance compared to measurement 

variance 

UNIPROT ID Protein name pool CV % 
Healthy 

Sputome CV % 

S10A8_HUMAN Protein S100A8 (Calgranulin-A) 7.978 365.521 

HPT_HUMAN Haptoglobin 9.576 651.593 

AACT_HUMAN Alpha antichymotrypsin 10.276 331.670 

AMY1_HUMAN Salivary Amylase 10.787 525.235 

FETUA_HUMAN Alpha-2-HS-glycoprotein 11.355 384.569 

S10A9_HUMAN Protein S100A9 (Calgranulin-B) 12.240 256.063 

ILEU_HUMAN Leukaocyte elastase inhibitor (SERPINB1) 14.431 338.942 

CYTS_HUMAN Cystatin-S 16.125 536.631 

IGHM_HUMAN Ig mu chain C region 16.305 404.459 

PLSL_HUMAN Plastin-2 16.830 206.644 

These proteins are likely biologically relevant.  Many of these are listed in the biomarker summary 

database.  Supplementary excel file 1 
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Supplementary Table S2. Proteins with poor repeatability due to sample processing 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proteins that display high CV of measurement across pools but good replication between injections 

are likely to be poor quantifiers due to sample preparation and are likely to be unstable or variably 

modified. Many of these have potential homologues which could interfere with their quantitation. 

The majority of these are at the lower end of the coverage spectrum. 

 

 

 

 

 

 

  

Protein Rank

Sample 

Coverage 

%

pool CV%

% poorly 

replicated 

pool 

% poorly 

replicated 

sputome

Homologues? Comments

A1ATR_HUMAN 241 43.6 425.12 0.00 12.84
No proteins with homolgous regions in search 

database

SKT_HUMAN 234 44.8 266.94 0.00 11.61
No proteins with homolgous regions in search 

database

TRRAP_HUMAN 246 42.8 241.75 0.00 13.08
No proteins with homolgous regions in search 

database
Nuclear

K1671_HUMAN 255 41.2 222.14 0.00 14.56
No proteins with homolgous regions in search 

database

CNTLN_HUMAN 249 41.6 213.01 0.00 11.54
No proteins with homolgous regions in search 

database
Centrosome, centriole

MYH11_HUMAN 272 40 200.40 0.00 0.00 Multiple Myosin family members

BASP1_HUMAN 124 67.2 196.75 5.26 1.79
No proteins with homolgous regions in search 

database
membrane protein

1433G_HUMAN 237 44 190.22 0.00 10.91
Similar to other 14-3-3 proteins but  homology 

with 14-3-3F

LDHB_HUMAN 87 80.8 180.97 9.52 4.46 Homologous regions to LDHA see below

K1C18_HUMAN 252 41.2 169.52 17.65 10.68
Some proteins with high identity but minimal-no 

tryptic homology

HPTR_HUMAN 260 40.8 163.28 0.00 10.78 Homologous regions with haptoglobin

TRNK1_HUMAN 266 40.4 158.58 0.00 10.89
No proteins with homolgous regions in search 

database

1433F_HUMAN 254 41.2 154.77 0.00 0.97
Similar to other 14-3-3 proteins but  homology 

with 14-3-3E

K1C10_HUMAN 89 79.2 145.96 4.55 3.54
Similar to other keratins.  Some tryptic regions of 

homolgy 

LDH6A_HUMAN 171 56 126.66 0.00 12.14
Homologous regions to LDHA and B proteins see 

above
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Supplementary Table S3. Poor quantifying proteins in the mass spectrometer 

 

Proteins that display high CV of measurement across pools and high levels of poor replication 

between injections are likely to be poor quantifiers in the MS instrument. Many of these are from 

hydrophobic compartments or have potential homologues which could interfere with their 

quantitation. The majority of these are at the lower end of the coverage spectrum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Protein Rank

Sample 

Coverage 

%

pool CV%

% poorly 

replicated 

pool 

% poorly 

replicated 

sputome

Homologues? Comments

POTEE_HUMAN 40 95.6 184.42 50.00 41.00 Multiple POTE family members

GOGB1_HUMAN 132 64 140.09 18.75 33.75
No proteins with homolgous regions in search 

database
Membrane protein

PCNT_HUMAN 145 60.8 73.69 17.65 32.89
No proteins with homolgous regions in search 

database

Centrosome, centrioles, 

ci lia

MYH6_HUMAN 189 51.6 146.93 42.86 32.56 Multiple Myosin family members

HS90B_HUMAN 97 76.8 129.94 50.00 32.29 Multiple proteins with homologous regions

MYH7_HUMAN 169 56.4 571.91 18.75 31.21 Multiple Myosin family members

MYH7B_HUMAN 209 48.8 130.44 21.43 29.51 Multiple Myosin family members

GOGA4_HUMAN 120 68 49.90 33.33 29.41
No proteins with homolgous regions in search 

database
Membrane associated

MYH4_HUMAN 232 45.2 135.92 15.38 28.32 Multiple Myosin family members

TMPSD_HUMAN 170 56 149.17 20.00 27.86
No proteins with homolgous regions in search 

database
Membrane protein

CE290_HUMAN 146 60.8 445.27 26.67 27.63
No proteins with homolgous regions in search 

database
Centrosome, cilia

MYH3_HUMAN 222 47.2 128.56 20.00 27.12 Multiple Myosin family members

ACTN3_HUMAN 263 40.4 402.26 53.33 26.73 Multiple actinin family members

CK5P2_HUMAN 155 59.2 270.85 17.65 26.35
No proteins with homolgous regions in search 

database
Centrosome, centrioles

H90B2_HUMAN 175 55.2 979.89 20.00 25.36 Multiple proteins with homologous regions
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Supplementary Table S4. Top Canonical pathways enriched in the extended Healthy sputum 

proteome. 

Ingenuity Canonical Pathways 
Enrichment p-

value) 

Actin Cytoskeleton Signaling 2.51189E-22 

Epithelial Adherens Junction Signaling 3.16228E-19 

Remodeling of Epithelial Adherens Junctions 1.99526E-14 

Signaling by Rho Family GTPases 7.94328E-14 

RhoGDI Signaling 3.16228E-13 

Cellular Effects of Sildenafil (Viagra) 1.25893E-12 

RhoA Signaling 1.38038E-10 

ILK Signaling 2.23872E-10 

LXR/RXR Activation 2.69153E-10 

Germ Cell-Sertoli Cell Junction Signaling 5.49541E-10 

Ephrin B Signaling 2.29087E-09 

Glycolysis I 8.91251E-09 

14-3-3-mediated Signaling 4.16869E-08 

Regulation of Actin-based Motility by Rho 4.7863E-08 

Sertoli Cell-Sertoli Cell Junction Signaling 9.54993E-08 

Gap Junction Signaling 1.20226E-07 

FXR/RXR Activation 1.23027E-07 

Breast Cancer Regulation by Stathmin1 2.75423E-07 

Thrombin Signaling 3.16228E-07 

Virus Entry via Endocytic Pathways 4.36516E-07 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



S-17 

 

Supplementary Table S5. Top function and disease representatives in the extended healthy sputum 

proteome. 

 

 

Diseases and Functions Category heirarchy Diseases or Functions Annotation Enrichment p-Value 

Infectious Diseases, Inflammatory Disease, Respiratory Disease Severe acute respiratory syndrome 1.02E-06 

Cellular Movement, Immune Cell Trafficking Leukocyte migration 2.43E-05 

Infectious Diseases Viral Infection 3.76E-05 

Cellular Movement, Hematological System Development and 

Function, Immune Cell Trafficking 
Cell movement of leukocytes 4.84E-05 

Cell-To-Cell Signaling and Interaction Response of granulocytes 1.30E-04 

Inflammatory Response Inflammatory response 1.94E-04 

Cell-To-Cell Signaling and Interaction, Cellular Compromise, 

Cellular Function and Maintenance, Inflammatory Response 
Respiratory burst of granulocytes 5.22E-04 

Free Radical Scavenging 
Generation of reactive oxygen 

species 
7.85E-04 
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Cell-To-Cell Signaling and Interaction, Hematological System 

Development and Function, Inflammatory Response 
Immune response of neutrophils 9.60E-04 

Cell-To-Cell Signaling and Interaction, Cellular Compromise, 

Cellular Function and Maintenance, Hematological System 

Development and Function, Inflammatory Response 

Respiratory burst of neutrophils 1.04E-03 

Cell-To-Cell Signaling and Interaction, Hematological System 

Development and Function, Immune Cell Trafficking 
Binding of antigen presenting cells 1.14E-03 

Cell-To-Cell Signaling and Interaction, Hematological System 

Development and Function, Immune Cell Trafficking 
Adhesion of granulocytes 1.16E-03 

Organismal Survival Organismal death 1.16E-03 

Cell-To-Cell Signaling and Interaction, Hematological System 

Development and Function, Immune Cell Trafficking, 

Inflammatory Response 

Binding of macrophages 1.21E-03 

Cellular Movement, Hematological System Development and 

Function, Immune Cell Trafficking, Inflammatory Response 
Chemotaxis of leukocytes 1.81E-03 

Cellular Movement Chemotaxis of cells 1.92E-03 

Cell-To-Cell Signaling and Interaction, Cellular Growth and 

Proliferation, Hematological System Development and Function 
Stimulation of leukocyte cell lines 2.13E-03 

Cellular Movement, Hematological System Development and 

Function, Immune Cell Trafficking, Inflammatory Response 
Chemotaxis of natural killer cells 2.35E-03 

Cell-To-Cell Signaling and Interaction, Hematological System 

Development and Function, Immune Cell Trafficking 
Adhesion of immune cells 2.45E-03 

Cellular Assembly and Organization Formation of rosettes 3.05E-03 


