Environnement en libre-service adapté à l'industrie et sans code

ML Studio simplifies building, deploying, and scaling AI models

Outils spécialement conçus pour le cycle de vie du processus de ML industriel

Studio MLOps

Synchronizing machine learning processes with ML Studio

Présentation de MLOps Studio
ML Studio for powerful industrial AI

Elevate industrial AI operations. Designed to manage multiple AI model-building projects seamlessly, ML Studio handles implementing diverse datasets and managing various developmental experiments and deployments, ensuring a streamlined management experience. Deploy pre-trained models directly from extensive libraries tailored for industrial applications, or create custom models with ease using Jupyter Notebook integration.

ML Studio harnesses the power of Kubernetes orchestration to enhance machine learning operations. Experience efficient distributed training, precise hyperparameter tuning, and robust production deployment of ML models. This scalable, unified orchestration optimizes computational resources and simplifies the complex phases of all large-scale ML deployments.

Le regroupement des modèles déployés par instance permet une gestion efficace à l'échelle, ainsi qu'une meilleure organisation et accessibilité des actifs et des modèles d'IA. Cette fonctionnalité est cruciale pour les entreprises qui souhaitent tirer parti de l'apprentissage automatique dans plusieurs systèmes, en fournissant un cadre de processus clair et organisé pour stimuler la productivité et rationaliser les opérations dans les environnements industriels et de fabrication.

Empowering data and model management with ML Studio

Charger et explorer les données

Ease the management of AI datasets by allowing users to handle raw datasets efficiently by creating subsets with selected features and date ranges. Reuse of datasets stored in IRIS Foundry or directly import training sets, simplifying the data preparation phase of ML workflows. Robust data visualization tools include multi-line, histogram, correlation, and box-plot charting to help users view data trends and identify outliers. Use an intuitive interface with single-click options for exploring data through various methods ensuring usability and deep analytical capabilities, whether the data originates from IRIS Foundry or external sources.

Construction d'un modèle en un clic

Designed by technical experts in industrial applications, ML Studio facilitates the precise creation and process management required in training datasets for building AI models. Ensure accuracy and efficiency by comparing models against various testing datasets, and support iterative experimentation with different data pre-processing techniques and configuration parameters, making it easy to manage multiple runs and deployments effectively. Uniquely tailored for the industrial sector, ML Studio requires no coding, allowing process engineers and domain experts to harness its capabilities without specialized programming skills.

Construction d'un modèle en un clic

Registre des modèles

Configure deployments, ensure model accuracy, detect contributing factors, faults, and anomalies within a test environment, and more. The ML Studio model registry maintains a comprehensive record and revision history of models, enhancing transparency and facilitating simplified version history tracking. Duplicate models in the testing phase to assess the impact of changes and fine-tune models for optimal performance upon deployment, ensuring quick and efficient AI integrations.

Déployer le modèle formé

Enhance the deployment, management, and scaling of machine learning pipelines and experiments within a unified environment, significantly reducing the need for manual mappings during scaling processes. AI-powered contextualization automatically aligns data from existing asset models to the required parameters. Additionally, AI-model outputs are readily accessible for integration through an open API, facilitating their use in other applications. This openness extends to accessing insights through SymphonyAI’s purpose-built applications and an open API, ensuring seamless integration with existing applications.

Déployer le modèle formé

Surveillance et alerte

Effortlessly customize alert settings within ML Studio to suit specific needs and industrial use cases. Tailor alert windows and thresholds based on metrics such as data volume and required data points, ensuring timely notifications that match criticality, severity, and volume criteria. Prevent alert fatigue by implementing silent modes that regulate alert frequency during specific events, enhancing user experience. Produce AI models designed for industrial users, offering reliability and trustworthiness, and delivering actionable insights while mitigating alert overload.

Surveillance et alerte

Former à nouveau et répéter

Affiner itérativement les performances du modèle en intégrant de manière transparente de nouvelles données dans le processus de recyclage. Les utilisateurs peuvent lancer le recyclage des modèles par le biais d'une interface simplifiée, garantissant ainsi que leurs modèles évoluent en même temps que les distributions et les tendances des données, améliorant ainsi la précision et la fiabilité des prédictions au fil du temps. IRIS Foundry permet des mises à jour transparentes ou de nouveaux déploiements adaptés à des cas d'utilisation industriels spécifiques, offrant ainsi la souplesse nécessaire pour s'adapter à l'évolution des besoins de l'entreprise et à la dynamique du marché.

ML Studio Demo

Check out our video demo showcasing ML Studio: an industry-tailored, no-code, self-service environment. Experience how it simplifies building, deploying, and scaling AI models, with purpose-built tools for the Industrial ML process workflow lifecycle.

Explorer tous les produits

IRIS Foundry provides data connections, orchestration, unification, and AI modeling to enhance manufacturing efficiency, productivity, and improved decision-making through advanced analytics and machine learning.

fonderie iris

IRIS Foundry provides data connections, orchestration, unification, and AI modeling to enhance manufacturing efficiency, productivity, and improved decision-making through advanced analytics and machine learning.

fonderie iris

Ressources connexes

 
2.5.2025 Blog

Scale Industrial Data Management with AI

 
1.24.2025 Webinar

Operational excellence using industrial AI and knowledge management

 
1.22.2025 Case study

Novelis transforms from preventive to AI predictive maintenance with SymphonyAI

 
1.8.2025 Video

IRIS Foundry knowledge graph and Copilot for AI-powered industrial insight

 
1.6.2025 Video

Industrial AI trends and best practices – Frost & Sullivan